
-ftW 9EVALUATION AND ENHANCEMENT OF THE ARIT AUTONOMOUS FACE in2
RECOGNITIONi MRCHINEWU AR FORCE INST OF TECH
HEIOHT-PRTTERSOH RF O SCHOOL OF ENINEERING

UNC SSIFIED L C LAERT DEC 87 WIT/G1"NS -35 F'O 12/

EEIIEEEE-EEDI
EIEEIIllllIE

1111 112 11111 ~J25
I-

11111 ~2.0i36

- - I III :

MICROCOPY RLSOLU lION TEST CHART
NAI ONA I I'kA ,1

k.." %

N.

. If

VF. V: ., .:.-...,,.-.,... ,.,/ ,-.,...:. ,.: .,.''"'.,.,,.,....-,..-.,.-.,..,,,,. :.:.,,-,.-,% %,., ,-. -o. .,, , ., -.' ' - ' ' .. ' , . , . ..,. '. . ,", , " ," , " '

IInc

00
CID

DTIOC

FEB 099 8D

Evaluation and Enhancement of the AFIT
Autonomous Face Recognition Machine

THESIS

Laurence C. Lambert
Captain, USAF

AFIT/GE/ENG/87D-3 5

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

W right- Patterson Air Force Base, Ohio0
-' VMMUIO STYMN 88 2 4 060

Di~tibudoca Uairn'Jd

AFIT/GE/ENG/87D-35

IID

'St.

.5'

EB,
As

-'

Evaluation and Enhancement of the AFIT
Autonomous Face Recognition Machine

THESIS

Laurence C. Lambert
, : ~~Captain, USAF ' *-

". ,'/" ' ~ ~~~AFI T/GE/ENG/87D- 35 : -: .. .? '

.FEB 09a; g

' *< Approved for public release; distribution unlimited

'S

"- '-"5 .".-' ---- ---.--- ""''' ''' ''' - -- ,--- - :''.*..,.. ,5,- ."" " ". '' ".""''" -i.'",:.,.' . i'? , ---

AFIT/GE/ENG/87D-35

Evaluation and Enhancement of the AFIT
Autonomous Face Recognition Machine

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of J
Master of Science in Electrical Engineering -

Act',3'n1on For_ _ -

NTI:; : L-1.j

A c - !, 1on or

Laurence C. Lambert, B.S.
Captain, USAF

A'

December 1987

Approved for public release; distribution unlimited

Acknowledgements

To Christopher Andrew Lambert. Over the past year I have

poured my thoughts of you, my frustrations and my love for

you, into this work in order to make it a fitting dedication

to you. I thank God for the strength and endurance that I

needed to complete this work and for the part that you have

played and continue to play in my life.

To my wife Claire. You have shown more patience towards

me than I ever deserved during this past year. But I guess

that was easy for you because of all the years of experience

you have had in dealing with me.

To Professor Matthew Kabrisky. Thankyou. Your advice,

ideas, knowledge, humor, stories (in class these were often

called hiatus), optimism and guidance have been invaluable.

To everyone else. Mr Dan Zambon, the student's best

friend. Add 50% to your total manhours if you don't have

Mr Zambon managing the equipment in your lab. My subjects,

whose friendship I won't forget, nor will I forget their

faces (they appear in various figures in this thesis).

Table of Contents

s~. Page

Acknowledgements...................

List of Figures.......................v

List of Tables......................vii

Abstract........................viii

I. Introduction.....................1-1

Background. .. *.*.*.*....*.*.*..'................1-1
Problem Statement................1-2
Scope......................1-2
Assumptions....................1-3
Standards....................1-4
Approach.....................1-4
Thesis Structure.................1-5

II. Background of the AFIT Face Recognition System . 2-1

Cortical Thought Theory.............2-1
The Recognition System 2-4

System Environment 2-4
Image Acquisition and Preprocessing . . . 2-4

4.' Face Location................2-9
Windows..................2-12
Gestalt Calculation.............2-15
Recognition.................2-18

Summary.....................2-23

III. Evaluation and Enhancement...............3-1

System Environment................3-1
Image Acquisition and Preprocessing 3-2

Mioving Target Indicator...........3-2
Elliptical Mask..............3-11
Brightness Normalization 3-15
Contrast Enhancement.............3-21
Smoothing..................3-22

Face Location..................3-24
Evaluation of the Original Algorithm . . .3-24
New Algorithm...............3-26

windows.....................3-33
Gestalt Calculation..............3-36
Recognition...................3-40
Summary.....................3-41

Page

IV. Implementation....................4-1

Software.....................4-i
Program Structure................4-2
Database Design.................4-5
Summary.....................4-6

V. Test Results.....................5-i

Effect of Camera Settings on Performance . . . 5-i
False Alarms and Missed Faces...........5-4
Recognition Score................5-5

Confidence Level................5-6
Window Performance Factors...........5-9

Summary....................5-10

VI. Conclusions and Recommendations...........6-1

Conclusions....................6-1
Recommendations.................6-1

Appendix A: Equipment List................A-i

Appendix B: Software Listings................B-i

Appendix C: User's manual.................C-i

Appendix D: Gestalt Files.................D-1

Appendix E: Description of Brightness Normalization . E-i

Appendix F: Scenes Used to Test Face Location F-i

Appendix G: Fast Gestalt Calculation...........G-1

Bibliography.......................BI-i

Vita............................V-i

iv

List of Figures

OZ Figure Page

2-1 Application of CTT to Speech 2-2

2-2 Gestalt Mapping for Words 2-3

2-3 System Configuration 2-5

2-4 Studio Setup for Taking a Picture 2-7

2-5 Cursor Adjustment on Image 2-8

2-6 Eye Signature 2-11

2-7 Russel's Window Set 2-13

2-8 Recognition of Person From Parts of Face 2-14

2-9 Smith's Window Set 2-16

2-10 1-D Gestalt Transformation Process 2-17

2-11 2-D Gestalt Transformation Process 2-19

2-12 Dimensions Used for Scale Invariance Calculation 2-20

2-13 Example of Data Storage in a Recognition Database 2-22

3-1 Input to MTI 3-4

3-2 Scene Subtraction 3-5

3-3 Non-Zero Pixels Set to 255 3-6

3-4 Target Mask 3-7

3-5 Target Separated From Background 3-8

3-6 Example of a Hole in the Mask 3-10

3-7 Three Faces with Identical Internal Features . 3-13

3-8 Data Available to Recognizer 3-14

3-9 Signatures at Different Brightness Levels 3-16

3-10 Input to Brightness Normalization 3-18

3-11 Output From Brightness Normalization 3-19

3-12 Binary (Light/Dark) Scene 3-20

v

Figure Page

3-13 Pill-Box Kernel for BLUR..............3-22

3-14 Contrast Enhanced Face..............3-23

3-15 An Unacceptable False Alarm.............3-27

3-16 Result of Facial Feature Location 3-29

3-17 An Acceptable False Alarm..............3-31

3-18 measurements of Facial Features 3-34

3-19 New Window Set...................3-35

3-20 Window Placement in Gestalt Array 3-37

3-21 Output From RECOGNIZE...............3-42

4-1 AFRM Menu Structure.................4-3

4-2 Total System Option.................4-4

vi

;~- ~~~> ~~ ~ ~ k ~ ~ ~V

List Of Tables

Table Page

2-1 Russel's Test Results..................2-21

3-1 Gestalt Values for 2 Window Placement Techniques 3-39

3-2 Separation of Gestalt values.............3-39

3-3 Smith's Test Results..................3-40

5-1 Effects of F-Stop, Focus and Zoom on
Location and Recognition Performance........5-3

5-2 Face Location Test...................5-4

5-3 Summary of Face Location Test..............5-4

5-4 Recognition Performance for Single Windows . .. 5-6

5-5 Distance to First Two Candidates in List 5-8

5-6 Difference Between Candidate l and 2 Distances .5-9

5-7 Window Performance Factors..............5-10

6-1 Output Lists For 4 Images of a Subject 6-4

6-2 Calculation of Average Position 6-5

vii

Abstract

This thesis evaluates and improves the Autonomous Face

Recognition Machine (AFRM) created in 1985 at AFIT. This

effort involved re-writing the AFRM code in the C programming

language and hosting it on a Micro-VAX II. In addition,

several new algorithms were added to the AFRM including:

brightness normalization of input images, moving target

detection, and a new face location algorithm. The results

of this effort include: improved face location, higher

recognition accuracy, and near real-time processing.

This thesis includes a complete description of the AFRM

and its development history.

.
viii :

EVALUATION AND ENHANCEMENT OF THE AFIT

AUTONOMOUS FACE RECOGNITION MACHINE

I. Introduction

Background

A Face Recognition Machine (FRM) was developed at AFIT

in 1985 (Russel 1985). The FRM %as based on Cortical Thought

Theory (CTT) which proposes a new model of how a human brain

processes information. Richard Routh developed and presented

CTT as a doctoral dissertation at AFIT (Routh 1985). CTT

proposes that information is displayed as a two-dimensional

image on the brain. The brain then extracts the essential

information (the essence of the image) as a two-dimensional

vector, called a "gestalt". The gestalt is the only informa-

tion that is passed to the higher levels of the brain for

processing (Russel, 1985:3-1 to 3-2). The FRM reduces facial

images to gestalts and then compares the gestalts to a data-

base in an attempt to recognize the face.

In 1986 an AFIT student added automatic face location and

windowing algorithms to the FRM to eliminate human influence

on the recognition process (Smith, 1986). The face locator

was slow and recognition was less accurate because only the

internal features of the face (eyes, nose, mouth) were used,

but the question this student was trying to answer was, "Can

a machine, entirely on its own, determine whether or not a

'i-

% " -"

.r
-

" " ," - '/ '''''r'" " . '. .' '. . ', -' " '- . .', "- " % ~- '- % ,-.-7-e

person's face is in a picture and if so, can it determine to

,.* whom the face belongs?" (Smith, 1986:6-1). The answer is

"Yes" and the result of the student's thesis effort became

*. the Autonomous Face Recognition Machine (AFRM).

Problem Statement

This thesis effort evaluates the AFRM location and win-

dowing algorithms with the goal of improving recognition

score and speed. Both the score and speed were reduced with

the addition of the autonomous scene analysis (location and

windowing) algorithms in 1986, however human influence was

eliminated. The goal of this effort was to reduce the 5 to

30 minute scene analysis time as much as possible while

bringing the recognition score back up to at least what was

- possible when human influence was allowed.

Scope

Improvement of the windowing algorithms should improve

overall recognition accuracy. There are several windows on

the facial scene that will be tested as possible replacements

for the windows that have little affect on the recognition

score (Russel, 1985:6-11, 8-2). Going back to a whole-head

approach used in 1985 should also improve accuracy over the

internal feature approach now used (Smith,1986:6-2). The

only reason internal features are now used is the inability

to separate the edges of the head from a random background.

This thesis investigates two possible solutions to this

1-2

............

problem. The first is to apply an elliptical mask to a scene

centered around the location of the face with a size propor-

tional to the size of the internal features. This results in

a larger area of the face being made available to the recog-

nition algorithm. The second solution is to apply a Moving

Target Indicator (MTI) algorithm to a series of input scenes

prior to scene analysis. This may allow better detection of

the edge of the head.

Improvement of the location algorithm may speed up the

scene analysis, however the major improvement in speed will

be gained by re-hosting the AFRM on a new Micro-VAX in the

Signal Processing Lab at AFIT.

Assumptions

The assumptions from the past efforts (Smith, 1986:1-5)

that remain valid are as follows:

1. In any given picture the subject(s) are looking
squarely at the camera (there is no tilt or
rotation of the head).

2. The subjects are not wearing glasses and have
relatively relaxed expressions (the face is not
deliberately contorted).

3. Four pictures for each subject are sufficient to
characterize a person in the database.

4. The basic CTT algorithm used in the AFRM is valid.

There are no assumptions about the contents of scenes fed

to the AFRM. In order to be autonomous, the AFRM should be

able to process a scene with a random background.

1-3

WVIWU W -uwP-iirwwi .-- v r -.. rwlr;Ww. 4 W YrXWr -. 1 VI . V j. W.~ i- . -. - i .v WW-v -WYJV

Standards

Test results must meet the same criteria as set out

in the past thesis effort (Smith, 1986:1-5 to 1-6):

1. The system must demonstrate "human like" classi-

fication of human facial images.

2. Recognition performance must be as good as that
obtained by Russel (Russel, 1985:6-9 to 6-13).

3. No operator intervention is allowed in the face

location, windowing and recognition processes.

4. The system must be able to process pictures with

multiple (at least two) faces in them.

* .Approach

The approach used was a top-down conversion of the

software from the Data General computers to the new Micro-

VAX computer. As software was re-hosted it was tested and

compared to the original results. As algorithms were

transferred, enhancements were made and tested.

in most cases the software had to be re-written using

only the ideas from the original system because a different

language was used and because the extensive communication

requirements written for the two-computer configuration

were no longer required.

When the AFRM was up and running on the Micro-VAX, the

database was trained to test face recognition accuracy with

the new facial windows and gestalt calculations.

1-4

'. . ,

Thesis Structure

Chapter 2 gives an overall description of the previous

AFRM hosted on the two Data General computers. A review

of some of the literature used to support the development of

this AFRM is presented.

Chapter 3 evaluates the AFRM and describes enhancements

made during this thesis effort. A review of the literature

used to support the development of these enhancements is

presented. Chapter 3 topics are in parallel with Chapter 2.

Chapter 4 describes how the algorithms that make up the

AFRM have been gathered together into a complete program and

implemented on the Micro-VAX. Although the structure of the

AFRM is described, operational details have been left out as

use of the AFRM is covered separately in the User's Manual

appended to this thesis. The design of the database is also

covered in detail in this chapter.

Chapter 5 presents the results of testing performed to

verify the proper operation of the AFRM and to show the

differences made by the various enhancements.

Chapter 6 contains conclusions based on test results

and recommendations for further tests and enhancements.

.1,5

1-5

II. Background of the AFIT Face Recognition System

This chapter presents an overview of the AFIT face

recognition effort prior to this thesis effort. First there

is a discussion of Cortical Thought Theory, and then a des-

cription of the face recognition system. Some parts of the

face recognition process have been described in more detail

than others so the reader will be prepared to evaluate the

enhancements discussed in Chapter 3. The parts of the AFRM

that are not affected by this thesis are only breifly dis-

cussed here. These areas are covered in detail in Russel's

thesis (Russel, 1985).

Cortical Thought Theory

Cortical Thought Theory (CTT), developed by Capt Richard

Routh, proposed a model of the human brain that was based on

primitives of analogy as opposed to primitives of deduction.

Routh described how primitives of analogy could be used to

acheive human-like classification of data and human-like

recall or, "direct memory access" (Routh, 1985:40-42). The

classification, or single unique identification of an object,

was called the "gestalt" of the object (Routh, 1985:2,3,39).

The direct memory access ability comes from the technique of

mapping gestalts onto the surface of the brain. The gestalt

itself provides the location on the cortex that can identify

the input data (Routh, 1985:96-97).

2-1

The scope of Capt Routh's dissertation was to find a

gestalt mechanism that was reasonable for the brain to accom-

plish and that was in accordance with what was known about

the neurophysiological structure of the brain (Routh 1985:3).

As part of this dissertation, Routh demonstrated his gestalt

mechanism by applying it to a speech recognition problem.

Figure 2-1 shows how an audio input was transformed into a

gestalt value that identifies the word being spoken. Over-

lapping time slices of the audio input are transformed into

gestalt points on a phoneme mapping surface. These points

taken together as a "phoneme track" are then transformed into

a single gestalt point on the word mapping surface. This

demonstration showed the "human-like" classification of

inputs that Routh was looking for in a gestalt mechanism.

Word Surface

Location of word
rimar- - gestalt (ident-

Prim'audio Cortx ification ofCorte Phoneme track word)
~og-log mapping

of magnitude

spectrum of audio

Figure 2-1 Application of CTT to Speech (Routh, 1985:156)

2-2

Figure 2-2 shows the separation of unlike inputs and the

grouping of like inputs at the word mapping level. The

speech recognizer also had the "human-like" recall ability

required by CTT. The output of the recognizer was simply

the closest word on the word mapping surface.

In 1985 Robert L. Russel applied CTT to the problem of

face recognition (Russel, 1985:1-2). The results of Russel's

work, "increases the credibility of CTT as a model of human

sensory processing" (Russel, 1985:7-4). In 1986, Edward

Smith added an automatic face location algorithm to Russel's

face recognizer to make the recognition process independent

of operator influence (Smith, 1985:1-4).

SASS

ISS3SASH1
-3

I ASH SASH21 3
r:, TnT_I-37

ilCOT2 COT31

HELM COT1 COP 3
v ELM3i

"-: ELMll
• ELM2! -35

"'34 35 36 37 38 39 40 41 42

Figure 2-2 Gestalt Mapping for Words (Routh, 1985:168)I2-3

.,

.. 239

SAS
I .-. - -.. -- . .- -.- ---. , ,.-. .-A-..'.'---3" SA.S-: -.. .-.-- -.-i": '-38- -Z

The Recognition System

The following sections describe the AFRM and how CTT is

implemented in computer software.

System Environment

The AFRM was created using the two-computer configuration

shown in Figure 2-3. The equipment is listed in Appendix A.

* The Nova computer was used for image acquisition and display,

and the Eclipse was used for the large amount of numerical

processing required by the gestalt calculations. The two

computers shared a common disk drive and communicated via

* flag files stored on disk. In many cases these flag files

existed in name only to tell one computer that a process was

* finished on the other. In some cases the files contained

U. data that was to be passed from one computer to the other.

Software for the recognizer was written in Fortran IV and

Fortran V and extensive use of subroutine swapping and over-

lay techniques were employed due to the small main memory,

approximately 28K bytes, available for running programs

(Smith, 1986:4-1 to 4-4). Descriptions of the Eclipse and

* Nova top level programs and flowcharts are given in Chapter 4

of Smith's thesis and in Appendix D of Russells thesis.

image Acquisition and Preprocessing

The equipment shown in Figure 2-3 was used to acquire and

process images. The Octek 2000 video processing board con-

nected to the Nova was used to acquire four-bit images from a

black and white video camera. once acquired, an image could

be stored to disk, displayed on the monitor or printed on the

2-4

A -~ . .7

.~ -UN

K)4

frU,

-44

0

U'U

4>

orn

IL-

-5

video hard-copy unit. In Russel's thesis, image acquisition

was accomplished with a fixed camera setup and layout. This

layout is shown in Figure 2-4. The L,!ckground was a plain

piece of cardboard and the camera had to be calibrated to the

brightness of this board (Russel, 1985:C-1). After taking a

picture, the user provided the computer with the coordinates

of the face by manually adjusting a box-shaped cursor around

the subject's head as shown in figure 2-5 (Russel, 1985:B-9).

In order to recognize the face, the computer had to divide

the face into several separate windows. This windowing

process is described in the following sections. Success in

locating and windowing the face depended upon the contrast

found in the scene and so the input scene had to be pre-

processed to obtain a constant contrast value.

Preprocessing consisted of a contrast enhancement al-

gorithm that sampled the pixel values in the center of the

face and adjusted the contrast of the whole face based on the

average of the center pixels (Russel 1985:5-7,4-22 to 4-27).

In Smith's thesis, images were acquired using the same

equipment Russel used, but the setup shown in Figures 2-4 and

2-5 was not required. Instead of providing the computer with

the face coordinates, the computer ran an automatic face

location algorithm. The only requirement imposed on image

acquisition was a camera calibration (Smith, 1986:B-6) and

the background was allowed to vary.

Success in locating and windowing the subject's features

still required a constant contrast value, so Russel's

2-6

1 4 4

$4 4
wn

2-7

/' -00

V))

INCI W

/ 2

I I

I 0 0

0 C

0 a)

~- •

/2L.

.5
2-8

contrast enhancement algorithm was still used. The algorithm

was applied to the scene after the face locator found most of

the features of a face, in order to help it find the rest of

the features (Smith, 1986:3-19). Then a slightly modified

version of the contrast enhancement algorithm was applied to

the face to improve the accuracy and repeatability of the

windowing and recognition algorithms (Smith, 1986:4-15).

Face Location

There are two requirements of the face location algorithm

used in the AFRM. The first is to ensure that only faces are

passed to the recognition algorithm and that all other parts

of the input scene are discarded. The second requirement is

to find specific features on the face that need to be used

by the windowing algorithm.

4. In Russel's FRM the first (face location) requirement was

met by having the user position a block around the face as

shown in Figure 2-5. The second (feature location) require-

ment was met by using an automatic feature location algorithm

(Russel, 1985:5-40). The accuracy of the feature locations

were dependent on the contrast of the input image, the set of

rules within the location algorithm, and sometimes a manual

correction entered by the user (Russel, 1985:B-23).

In Smith's AFRM the face location requirement was accom-

plished using an automatic "facefinder" algorithm. Feature

location was accomplished as a part of the face location

process. The facefinder works by searching an input image

for certain facial characteristics called "signatures". The

2-9

.- .

facial signatures are present in most facial images and are

.e . rarely present when no face is present (Smith, 1986:3-1).

Smith presented test results in Chapter 5 of his thesis that

show how "face specific" the facefinder was.

The facial signatures are made up of the brightness

variations in a scene that are consistently found when a face

is present. The "eye signature" is made up of the three

brightness maxima found around the eyes (one between and one

to each side of the eyes) and the two brightness minima found

in the center of the eyes. Figure 2-6 shows that these

maxima and minima form a characteristic "W" shape when the

brightness on a line through the eyes is plotted. Smith also

defined a "nose/mouth signature" (Smith, 1986:3-14).

The development and calculation of the facial signatures

0 was based in part on similar work (Bromley, 1977) in which

specific features in mug file images were located using a

signature technique. The signatures were generated by adding

pixel values in each column of the image and plotting the

results. Characteristic maxima and minima appeared at the

center and edges of the face (Smith, 1986:2-6). Smith

generated his facial signatures by extracting columns from an

image and plotting the results of a one-dimensional gestalt

calculation for each column (Smith, 1986:3-12).

After convolving the signatures with a gaussian function

to smooth them, Smith applied a set of limits to determine

if the signatures represented a face. The limits defined

allowable variations in maxima and minima, the maximum

• "2-10

5.d

-- 4-.

t

CU

II

*Ic

,ii

I

k

Al

2-11

"* -.,." -. ; . -. +..-. -. . -
"
- .* * **.. -.. -- ,.* '. *2.r*- .. ,~-" "; . - *' ,'," '2 , . .

distance ratios between various points on the signature, and

the maximum variation of the slopes between maxima and minima

(Smith, 1986:3-14,4-12).

Windows

Once the features were located, the face could be divided

into windows. "Windowing" the face, or looking at small

pieces, was required to separate similar faces and because

the gestalt calculation had trouble with symmetrical faces

(Russel, 1985:4-15 to 4-19). Russel used the following:

1. Left Half of Head.
2. Right Half of Head.
3. Right Side, Top of Eyes to Chin.
4. Right Side, Top of Eyes to Mouth.
5. Right Side, Top of Nose to Chin.
6. Right Side, Top of Head to Bottom of Eyes.

These windows are shown in Figure 2-7. Russel selected these

windows based on the following research.

1. Russel's experiments with the gestalt calculation
on whole faces showed that it could not distinguish
a wide symmetrical face from a narrow face. The
gestalt calculation is basically a center-of-mass
calculation, so for symmetrical faces the center of
mass always falls on a line drawn vertically
through the center of the face. By gestalting the
two halves of the face separately (windows 1 and 2),
a change in the aspect ratio of the face will cause
a change in the gestalt value (Russel, 1985:4-16).

2. Russel's literature review discusses the following
experiments on human face recognition capability.
Figure 2-8 shows a study of the ability of humans to
recognize a face when shown only a part of the face
(Goldstein and Makenberg, 1966). Some parts of the
face yeilded higher recognition scores than others.
Another experiment measured the number of times a
baby looked at different features on its mother's
face (Haith and others, 1977). Some features were
used much more frequently than others.

2-12

or,

i .4~

2-13

a'a

E F G

Fig. 1. Mcer~i vr~rttu lC n iin .%

ositniC m*%k '&A u.%a d to ucrttud4 nbi%hAtche.4 %ecthan.%. .immrt-

ricAl reitutes. %uch as and. It. %er. rdnd(uly %l-d t %4Mpi4

left And flgnt 1atv4

.#1g

%~~~ F it Z. Peir Cent arraflI Idhf;(tIf afnf- Ia%- kititeaI, r fe (k-. (Ir

% 1) and fifth (a') grade -ttjhp(L1% ion conflit aag to %J'.

Figure 2-8. Recognition of Person From Parts of Face
(RUSSel, 1985:2-19)

2-14

W.. . .

Smith used a different set of windows because he had

less feature information available. The facefinder was

based on signatures that located the internal features

only (eyes, nose, and mouth). Location of the edges of

the head could not be obtained because the background was

no longer a constant value. Figure 2-9 shows the set of

windows selected by Smith.

Gestalt Calculation

The gestalt transformation is the heart of the AFRM. The

results of this calculation provide the data needed to recog-

nize the faces in the input scenes. Chapter 4 of Russel's

thesis discusses the original gestalt transform (Routh 1985),

and how it was modified for use in the FRM. The gestalt

(0 transform is basically a center-of-mass calculation where

mass is represented by scene pixel values. The darker the

pixel is, the more mass it has and therefore dark pixels will

have more influence than light pixels on the location of the

center-of-mass (a negative of the image is used so that the

dark pixels become the larger mass values).

Figure 2-10 shows how a one-dimensional (I-D) gestalt

transform was implemented. A point-by-point multiply and add

(dot-product) was calculated between a gaussian function and

an input waveform (2-10 b,c). The result was one element in

the output array (2-10 d). By shifting the gaussian to the

left and taking the dot-product again, the next value in the

output array was calculated. Figure 2-10 shows the gaussian

2-15

, , , ' ,",' , L . '''. ''.. .. " '- . "--''. U. " ..-. ''"-'-' .-. ". .-.- '. .-.-. ".' .. -. "

U)

44.

0

4-1

2-164

AR9AY VALUES

ARRAY £tIAT
Q. GF5TALr T AAAYW CO(Fele/ENrS AMiVA

TiDA 8e Y frit4NUMA

~.7-AWJP8av? oos'rC,rvT AIRqy

* c. INPUT' SIGNAL ARRAY

-7 1o

W~i oi-nw muTAT PnSFO? Oy7Fur of RTRANS5B
(P0/N A! PoorT Aun o-.l Jam Si OF AMORAS

/# Wr4' b AiVO ,AfIT C.

Figure 2-10. 1-D Gestalt Transformation Process
(Russel, 1985:5-43)

2-17

function used for calculating three elements (1, 32, and 64)

.~ ~ of the output array. To calculate the gestalt for a 2-D

image, the 1-D transform of each row of the image was cal-

culated. The resulting arrays became the new image and the

1-D transform of each column was calculated. The gestalt

-* value was the location of the maximum value in the resulting

5- array as shown in Figure 2-11 (Russel 1985:5-42 to 5-46).

5- A final operation was performed to scale gestalt values

to make the FRM size-invariant (size of face was allowed to

vary). Figure 2-12 shows a window that was placed into a

64X64 array and gestalted. The scale factor (SF) applied to

the gestalt value was the maximum scale factor that allowed

the window to remain in the 64X64 array (Russel, 1985:4-10).

The final gestalt value was calculated as follows:

*SF = 64/A where A - max(X WINDOW, Y WINDOW)

Final Gestalt (X , Y) - (XI * SF ,Y' * SF)

Recognition

In order to identify and pull one face out of a group of

faces, the AFRM has to be trained with the whole group. This

was accomplished by setting up a database of gestalt values

for a group of people. The database was loaded, "trained",

with the gestalt values from 4 images of each individual.

when a new face is entered into the AFRM and gestalted, the

gestalt values are compared to those in the database. The

name assigned to the new gestalt values is the name belonging

to the closest set of gestalt values found in the database.

2-18

.5V V

6. CT4/- T 7ANS5FcM OF CLW$N 6F~S
SuaJY~tTEOF104 04//AL Y Mt

(R sel 9 5:-5

2 -1

Lj ' W W . ' 4 ~ ' W G 4 - ' V- ! P Y J'!

PI£I

Co

y GESTALT
OF IMA GE

Y WINXWIMAGE

PIXEL
.1 ARRA Y

Figure 2-12. Dimensions Used for Scale Invarience
Calculation (Russel, 1985:4-11)

•2.2

,

jW1 W, VV T X 1 N 7JU N 1V 1VT T'V7V 7j I .

If this name is correct then the AFRM has recognized the

individual. Sometimes the first choice is not correct, but

the AFRM is usually close. By rank ordering the individuals

in the database from closest-to-the-input to farthest-from-

the-input, a measurement of the "goodness" (Russel, 1985:2-3)

of the system can be made. This measurement, called the

Average Reduction in Uncertainty (Russel, 1985:6-8), tells

how close the AFRM came to identifying the face correctly.

Table 2-1 shows Russel's recognition results. With a data-

base of 20 individuals, a 99% reduction in uncertainty was

obtained.
'

Table 2-1. Russel's Test Results (Russel, 1985:6-9)

Number in Database: 20
Number Recognized as ist Choice: 18

I • Number Recognized as 2nd Choice: I
Number Recognized as 3rd Choice: 1
Absolute Correctness - 0.90

- Average Reduction in Uncertainty - 0.9925

In order to achieve "human-like" recall capabilities,

the database was setup so that gestalt values would directly

provide the name of the individual in the input image. The

structure of the database is shown in Figure 2-13. Since the

training for each individual was done with multiple images

(up to 4) there is an area on the surface of the database

structure where each individual could be mapped. Instead of

mapping the individual into more than one coordinate location

the AFRM trains only one location with the individual's data.

2-21

OW

44-

4r--
-wo

.44L

CAC

fu4-

-4l

2-224

The data includes the size of the area that this individual's

gestalt values are spread over (as X,Y standard deviations),

and the individual's ID number. Now by combining the six

window gestalts into one coordinate location and searching

for ID numbers within a specific range around this location,

an ordered list of names is generated. The recognition time

is fixed by fixing the size of the searching range. Russel's

thesis gives a complete description of the design and imple-

mentation of the database.
.

Summary

This chapter presented a review of past face recognition

efforts at AFIT. This review should give the reader enough

background on the AFIT face recognition system to understand

*the evaluation and enhancements presented in Chapter 3.

o2-..

2-23

%p

% % III. Evaluation and Enhancement

This chapter evaluates the AFRM discussed in Chapter 2

and presents enhancements made for speed and accuracy. The

sections in this chapter have the same titles and order used

in Chapter 2.

System Environment

Re-hosting the AFRM onto a new computer system was an

important part of this thesis effort. This was required for

several reasons. First, the Data General system shown in

Figure 2-3 has outlived its usefulness to AFIT and may soon

be removed from the Signal Processing Lab (Kabrisky, 1987).

Second, the memory limitations and communication problems

within that system resulted in slow-running programs and

complicated programming techniques. Third, a new environ-

ment was needed to allow some of the enhancements added as

part of this thesis effort.

A Micro-VAX II computer in the Signal Processing Lab met

all the hardware requirements needed by the AFRM including:

Memory: A 9MByte main memory, Three 71 MByte hard
disk units, and a TKS0 tape drive.

Image Processing: An FG-100-Q Image Processing system
with software library), and an RGB monitor.

Software: MicroVMS 4.4 operating system, DECnet,
VAX Fortran, LISP, and C.

Access to: A Video Hard Copy Unit, Printers, and
an RS-232 connection to the Data General.

3-1

Choosing a software language was based on minimizing the

effort of rewriting the AFRM (by using a similar language),

and allowing easy interface to the hardware components. Of

the three languages available on the MicroVAX (Fortran, C,

and LISP), Fortran and C were chosen as the easiest possible

replacements for the Data General Fortran IV and Fortran V.

C was chosen over Fortran because the software library for

the image processing board on the Micro-VAX is written in C

and extensive use of this library is necessary.

Image Acquisition and Preprocessing

In order to recognize a subject, the AFRM must be given

an image of the subject's face with no significant tilt or

rotation of the subject's head. With no other constraints

imposed on the image, the AFRM is required to locate and

recognize the subject. In order to help the AFRM accomplish

this task quickly, accurately, and consistantly, several

preprocessing steps can be performed on the input image.

Moving Target Indicator.

In Russel's FRM, the user was required to identify the

location of the face by positioning a box-shaped cursor on

the video monitor. The only part of the image used by the

FRM was the part inside the box. Smith provided the whole

scene to the AFRM and added an automatic location algorithm

to locate a randomly positioned face in a random background.

This location algorithm could take anywhere from 5 to 30

minutes to find the face in the scene (Smith, 1986:B-9) and

3-2

could not separate the edge of the subject's head from the

background.

As part of the thesis effort reported here, a moving

target indicator (MTI) algorithm was added to the AFRM as

the first step in processing the scene, with the following

assumption:

Faces may be present on moving targets but
are never present when there is no motion.
(The motion must occur between the acquisition
of two consecutive scenes and the user will
be allowed to bypass the MTI step in order to
process previously stored or "still" photos).

Using this assumption, the time required to locate a face

would be greatly reduced by searching only a portion of the

scene. In addition, the MTI algorithm might enable the

4 separation of the edges of the head from the background.

Figures 3-1 through 3-5 show how the MTI works. Figure 3-1

shows two scenes, one with a subject and one without. The

top of Figure 3-2 shows the result of a point-by-point sub-

traction of one scene from the other. At this point the

-. presence of a moving target is determined. The location of

the target is the location of any non-zero pixel values in

the resulting scene (everything described so far can be

accomplished in less than one second). In Figure 3-3 a

block has been drawn around the non-zero values and all

these values have been changed to 255. This shows that

-. some areas of the moving target had pixel values equal to

the values in the background (holes) and that video noise

in the backgrounds did not allow the backgrounds to cancel

~ ~.-.out (leaving spots). In Figure 3-4 all the holes have been

3-3

IL

-4

0

a4.

- i1-4

La

?,,

ma

3-4

.4-...-..... -.::: .: ::. . -:::..:. ; : :: - .: ; -

UN

3-5

LA
Ln

3-64

"JI Pl Pwlkn U

3-7

-~rw: .- -v'rw-~~Y-~ ~ v*~. r. w; w~ 1*. ~-. - - * , -- -- ,* -. - *

'V

U

U
0
La
C&.

V
a)
.l~J

4 'U
La

.1*

'U

9.

LA

C.,

'9

-4

3-8

filled and all spots eliminated to create a target mask.

'<: Figure 3-5 shows the results of a point-by-point logical

AND performed between the bottom scene and this mask. This

scene becomes the input into the AFRM face location

algorithm. The results of testing the MTI are as follows:

1. The AFRM face location time has been reduced by
a factor of M because it only searches inside the
block.

M - scene size / block size

2. The AFRM does no further processing on a scene if
there is no moving target because the scene has
been reduced to zeros (it can operate in a loop
until a target is found).

3. Most edges of the head are closely (but not exactly)
determined, but nothing is known about the bottom
edge because the subject's body is part of the moving
target.

4. All the holes in the mask (for this first example)
were completely surrounded by a white area and so
it was easy to determine what to fill in. Figure
3-6 shows a second example where a hole in the mask
is at the edge. There was no way for the computer
to decide whether this was a hole or actually the
proper edge of the moving target (look near the
hairline). In this case the random background
matched a small region of the head causing its
elimination from the input scene. This randomly
occuring and undetectable event may result in an
unrecognizable face.

Because of these results, in the present AFRM the MTI

algorithm was implemented only to speed up the location of

the face. The processing of Figures 3-3 and 3-4 had to be

replaced by a more consistant method of determining the

edges of the head, and the option of skipping the MTI

altogether was provided to allow still photo processing.

The software for the real-time subtraction is called

* 3-9 .I

% Vi
3 - 9eW_

, ~-*- < ,* r.r..' nr"WWU v-~ rt r r ..- * C v r, ~ r~ r. r ii-, r wv'r r~. ~

* ~p.J.

t

/
41

C
-4

41

0

0

41
-4

B
'U

LtJ

41

*1 3-10

'p.

SUBDEMO.C, and for detecting and isolating of targets, is

~ called MTI.C. This software is listed in Appendix B.

Elliptical Mask

* The maximum information that can be provided to the AFRM

for recognition of a subject's face is a frontal view of the

subject's whole head. No information from beyond the edges

of the head is allowed because this information comes from an

uncontrolled background. The MTI algorithm can separate a

moving target from the background, but it is not quite good

enough to use with only brightness values from a black and

white image. Smith chose to provide only the internal fea-

tures of the head and this resulted in a lower recognition

.5 accuracy. The technique presented here, called an elliptical

mask, is designed to provide the recognition algorithm with

E.. an approximation to a whole-head view of the subject (provi-

ding less information than the whole-head approach but more

information than the internal feature approach). The goal is

to give the face recognizer as much information about the

subject as possible without adding uncontrollable background

data. In order to create an elliptical mask, the following

assumption is necessary.

The head is elliptical (available software allows
easy creation of only ellipses, circles or rectangles).
The size of the head can be approximated if the size
of the internal facial features are known.

Using this assumption and Smith's automatic face location

algorithm (to find and measure the internal features), the

size of the subject's head is approximated. An ellipse of

S 3-11

f- -'l A -1 -'1 . - a - ~ ~ . . -'

this size is drawn around the face and everything outside the

ellipse is cleared to a constant brightness value. This new

image is fed into the recognition algorithm just as Russel

did with a whole-head on a pristine background. Testing the

Selliptical mask algorithm yielded the following result.

The ratio between facial feature size and head size
is not a constant. Figure 3-7 illustrates this with

three subjects having the same size heads. This
figure also shows that features may not be found in
a constant location on the head.

Because of this result, the ellipse size and center location

had to be adjusted so that it would not extend beyond the

edge of any subject's head. The proportions and placement of

features for a typical head were obtained from a drawing

course instruction book (Edwards, 1979:143-145). Figure 3-8

shows the amount of each head made available by the final

version of the ellipse algorithm. It can be seen that

different amounts of data are available to the recognition

algorithm for each subject. This is good because the internal

features (faces) of all the subjects are identical (the face

of subject #3 is a scaled up version of the others and the

face recognizer is designed to be scale invariant). The face

recognition algorithm cannot "see" the hair of subject #1 in

this image, but this will be consistant for all photos of

subject #1 and so this is not a problem. Being able to "see"

data outside of the internal feature area, (more data for

some faces than others) has allowed the AFRM to distinguish

between three subjects that could not be separated using only

internal feature information.

3-12

7~ '~ ~W -~ "~ ~ -~ ~U '.N~W~~.'~V' 1rwv' ~ ~ 5fU.~ \'LJ9~~ 'J~ ~ j J j E~'y~' ~ q. ~ ~ ~

~83

U'

* V
Li

.1.J

a,
ra..
-4

'U

Li
a'

.LJ
C

-4

'U
U

C
a,

N

a"
U'a,

U
'U
Ca..

a,
a,
LiS

I-

a,
Li

Ca..

a.

3-13

S *~ 'a -.

* C 4 -- -

I.

Li
a,
N

C

0
U
a,

0
4.)

a,
.0

'.4

'-4

4.
'U

4.)
'U
0

a,
Li

'-4
C34

I'

3-14

* U. ~ -- -m *~~ ~

The software used to calculate the size and location of

the ellipse is included as part of the subroutine FACEMAP in

the code for the AFRM, called FACE.C in Appendix B.

Brightness Normalization

When Smith's face location algorithm was re-coded on the

Micro-VAX, a modification was made to make it invariant to

d the overall brightness of the input scenes. This allowed the

location algorithm to locate a face in both dark and bright

settings as shown in figure 3-9. This was done by comparing

the eye signature minima and maxima to the value of the first

maximum found (all others had to be within a specific range

of the first). The value of the first maximum is the local

brightness of the signature, and the eyes are "dark" compared

to this value.

d.O Further testing showed that the face location algorithm

was prone to false alarms when presented with a certain class

of input objects (which is discussed in the next section).

The solution to this false alarm problem was to change the

face locator from a one-dimensional (l-D) signature analysis

algorithm, into a 2-D object analysis algorithm. This

required that an eye be dark compared to brightness values

all the way around the eye, no longer at just one point. The

new face location algorithm had to find dark objects in a 2-D

scene rather than dark points on a 1-D signature. A "dark"

object is defined as an object that has a lower brightness

value than the values of all objects surrounding 't. For

example; a brightness value of 20 is not considered dark if

3-15

S"

at
1Q

.4-1

-C

CU
.hW

44

4dJ

In

3-16

VU L UVV V V Nr UW r .WW U 1IA.W~ .'. r U11 J 1WW . Vl~ ~ ' VI* RW V MA~n V P~ " Jr -J l "-%r J' ~ WIWIN

all the values around it are 10, but a value of 100 is dark

: ~ if it is surrounded by values of 200.

The brightness normalization algorithm calculates the

average brightness in a square-shaped neighborhood around a

pixel and resets the pixel value as follows:

pixel value - 128 + (pixel value - neighborhood average)

In this way the "darkness" of the pixel is measured relative

to a fixed average value (128). This is done for every pixel

in the scene (each having its own neighborhood). Figure 3-10

shows an input scene with 4 different regions of brightness.

Normalizing this whole scene results in Figure 3-11. This

figure shows that the recognizability of a face is not

dependent on the overall brightness of the face, and it will

be scenes like Figure 3-11 that are input into the face

recognition algorithm. The face location algorithm is only

looking for dark objects, so a second step in brightness

normalization is to decide whether a pixel is dark or light

relative to its surroundings. From Figure 3-11 it is easy to

see that anything below the fixed average of 128 is dark and

anything above is light. By setting a threshold value just

below 128 and comparing all pixels to this value, a binary

(light/dark) scene like Figure 3-12 is easy to generate.

This scene shows that all facial features were dark relative

to their surroundings (this is why the signature technique

worked).

3-17

4

-4

3-18

*444.

.op.

4IA

.000

U.d

3-195

4-

4-

3-2

The first half of the brightness normalization algorithm

is a reasonable pre-processing step for a CTT-based and

"human-like" face recognizer. The algorithm fits a human

model if it is thought of as one of the pre-processing steps

performed by the retina (Werblin, 1973:71-79) before sending

the image to the brain. Asking a subject to point to dark

objects in Figure 3-11 verifies the human ability to make the

light/dark decision (the second half of the algorithm) but no

assumptions are made about where this decision occurs in the

human.

The code for this algorithm, without the binary decision

part, is listed in Appendix B as BRIGHT.C. Appendix E gives

a complete analysis of this algorithm. The whole algorithm

is included as a subroutine in FACE.C called BRIGHTNORM.

Contrast Enhancement

In Smith's AFRM, contrast enhancement was used to help

the face location algorithm. It was also used by both Smith

and Russel to more accurately locate the edges of features

prior to windowing. After calculating the window locations,

both authors could have taken the data for each window from

the original (non-enhanced) scene. However, the contrast

enhanced faces presented much more consistant data to the

recognition algorithm because slight shadows and reflections

were removed from the face. The new AFRM presented here no

longer needs to enhance contrast in order to locate and

window faces, however it is still used prior to recognition.

The recognition algorithm takes faces that have been

3-21

.1

brightness normalized and contrast enhances them using an

,-, ITEX library function called HISTEQ. This function generates

a histogram of a specified sample irea on an image and then

uses this histogram to modify the brightness values of the

entire image (ITEX-100, 1986:9-27). In this case the sample

area is the internal feature area starting just below the

eyes and ending at the center of the mouth. The result of

contrast enhancement is shown in Figure 3-14. This result is

close to the enhanced faces in Figures 2-7 and 2-9.

Smoothing

Before Smith's face location algorithm could evaluate a

signature to see if it represented a face, Smith found it

necessary to convolve the signature with a gaussian function

to smooth it. This was to eliminate noise that added extra

minima and maxima to the signatures as shown in Figure 2-6.

Figure 3-9 shows a signature after smoothing. On the Micro-

VAX, the ITEX library function "BLUR" was used for smoothing

the image in this work. This function convolves the image

with the following kernel.

1 1 1 1 1

1 2 2 2 1

1 2 1 2 1

1 2 2 2 1

1 1 1 1 1

Figure 3-13. Pill-Box Kernel for BLUR
(ITEX-100, 1986:9-25)

3-22

-12121
11111

Figue 3-3. ill-ox Krne forBLU

5'

.d.

'a

'a

SI..'

.S4 -

45

*15

~g

'a

-S

J Figure 3-14. Contrast Enhanced Face

.5 .5..-

.5

S..

3-23
.5.

4-.
-S.

5.. 'a .5

...S *. S

~ 5%. '~'

Face Location

Part of the scope of this thesis is to evaluate the

automatic face location algorithm and attempt to speed up

face location while improving recognition accuracy. This

* section is written in two parts. The first part describes

test results from the original face location algorithm and

the second part describes a new, two-dimensional, version of

the location algorithm.

Evaluation of the original Algorithm

Smith's face location algorithm was re-written in the C

programming language and tested on the Micro-VAX with the

P following results:

The location algorithm can find all the faces (up to 4)

in an input scene in approximately 4 minutes. This includes

time to pre-process (smooth) the scene, time to store each

face to disk, and time to wipe out each face in the scene

(wipe out after saving to disk so it won't be found again).

The face location algorithm is scale invariant. Overall

size is not one of the measurements used in evaluating the

facial signatures, although a maximum allowable size has to

be defined so the facial windows will fit into a reasonable

array size for further processing.

The location algorithm is brightness invariant. All the

values of minima and maxima are measured in relation to the

first maximum found on a signature.

The algorithm is sensitive to variations signatures due

to eyeglasses (dark-rimmed) and mustaches. Eyeglasses add

3-24

minima to the eye signature and mustaches eliminate the

bright region that allows separation of the nose and mouth.

The algorithm is sensitive to head rotation and lighting

direction. This is not a problem as long as the subject is

looking squarely at the camera and the lighting is directly

overhead (two assumptions used in this thesis). However, in

testing scale invariance and testing against various back-

grounds, subjects had to be positioned in various locations

in the lab. This made it impossible to control lighting

direction and head positioning. To find out why the AFRM was

failing to find many faces that looked like acceptable inputs

(in the author's opinion, the face was looking straight at

the camera and lighting was overhead) a signature graphing

program was developed. This program, called GRAPH.C in

Appendix B, allowed the user to plot the brightness variation

along any line in the input scene so that measurements could

be taken on the eye signatures. The problem with slight

changes in lighting and rotation is that the symmetry of the

eye signature is destroyed. A~lowing greater variations in

the measurements made the face locator capable of finding

more faces but also increased the number of false alarms.

There is no clear dividing line between faces and non-faces

using this face location algorithm.

The algorithm was prone to an unacceptable class of false

alarms. The signature technique ensures that certain bright-

ness variations are present in a scene before declaring that

a face is present. These variations include finding two dark

3-25

i + %r wA ILI-L %F "I AIV wit w wWWWW.-. . 77 -.. 1
-

12, ' -W°E

objects side by side on a light background (eyes) and two

more dark objects below and between the first two (nose and

mouth). The problem is that the signatures look on a single

line through the objects and can't tell what brightness is

present above or below this line. Figure 3-15 shows an

example of an object that can pass all the measurements of

the face locator but does not at all resemble a face. The

signatures that were found by the location algorithm have

been highlighted in the top of this figure and the "face"

has been circled in the bottom of the figure. In this case

the scene is random lines drawn on a piece of paper. Other

false alarms have included books in a bookcase and a computer

screen with several reflections on it.

New Algorithm

Figure 3-15 is an unacceptable input to send to the face

recognition algorithm. If there are going to be false alarms

now and then, they should at least resemble faces. In an

effort to correct this problem, a new face location algorithm

has been written that looks at faces in two dimensions (2-D).

Instead of looking for dark points on a 1-D line, the new

face locator looks for dark objects in a 2-D scene. This new

algorithm does have occasional false alarms but the objects

it finds always look like faces (when shown to a human sub-

ject, the subject can see the "face"). The new algorithm

also retains the scale and brightness invarience of the sig-

nature based algorithm, is less sensitive to variations in

lighting direction and head rotations, and is faster. The

3-26

. --........%... .

-- - - a

-N

-N

Ca..

@1

.0

4-b
0.
C,
0

N, U

4- 4..
N-

4.

-N

LA

0,
INi

Ca..

~ .4~/

N. 3-27
4..

-N.

.5,..

U'.-,-'

*VC r V- * - V% -1rV. - - .. - .- . .

original face locator was removed from the AFRM and put in a

program called FACESIG.C and is listed in Appendix B.

The new face location algorithm uses binary scenes like

the one shown in Figure 3-12. If it finds two dark objects

with nearly the same size, one next to the other, then a

possible pair of eyes is detected. A "dark" object in this

case is an object with a light area all the way around it.

This eliminates false alarms in scenes like Figure 3-15. The

only task the face location algorithm has is checking for two

dark objects (nose, mouth) below and between two others that

are side by side (eyes).

In order to help the locator check for a set of features

that make up a face, a feature finder was written that looks

at all the dark objects in the scene and generates lists of

possible eyes, noses and mouths. These lists are passed to

the locator which tries to assemble as many faces as possible

from them.

The feature finder ensures that the dark objects meet

three requirements. The first is that the object is a solid

area of dark pixels. The second is that the size of the

object is under the maximum size allowed. And the third re-

quirement is that the object can have a block drawn around it

that will not touch another dark object (ensures a light area

all the way around the object). Figure 3-16 shows a scene

after the feature finder was run. All the blocked in objects

are possible facial features.

When objects are located and sorted into lists by type,

3-28

-7 g

Figure 3-16. Result of Facial Feature Location

3-29

a'..7

their sizes and locations are stored in the feature lists.

.: ~-Then when the face locator determines that a set of features

make up a face, all of the feature locations used for win-

dowing the face are already known.

-~ When the new face location algorithm was tested on the

Micro-VAX, the following results were observed:

The location algorithm finds all faces in an input scene

in less than 2 minutes. This includes time to pre-process

(obtain Figure 3-12), time to locate features, and time to

store each face to disk.

The location algorithm is scale invariant. AS long as

feature sizes match each other within a face, it doesn't

matter what the overall sizes are as long as they are under

a maximum defined limitation.

0 The location algorithm is brightness invariant. The

brightness normalization algorithm takes care of variations

in the input scenes.

The algorithm is sensitive to eyeglasses and mustaches if

they get in the way of separating facial features.

The algorithm allows slight head rotation and variations

in lighting direction (as long as lighting is still from

somewhere above the subject). There are no measurements

for symmetry between the eyes.

The algorithm will find faces where no human faces exist

but the false faces will have much more "faceness" in them.

Figure 3-17 shows an example of a false alarm. The top of

the figure shows the original scene and the bottom shows a

3-30

-4

C)

A

3-31

block drawn around the internal feature area of the "face"

that the location algorithm found. When the algorithm was

given the scene in Figure 3-15, it did not find a face.

The new location algorithm is a more reasonable model of

a human. It is hard for a human to find a face in a scene

given one line of data at a time, but easy if given small

regions of the scene. Research into eye scanning patterns

(Luria, 1966:467-484) show that it is likely that people are

evaluating small areas in a scene. If the brain can deter-

mine whether a dark object is present in a small area of a

scene, and remember where that area is in relation to all

other areas, then it can easily recognize more complicated

objects in the scene given some simple rules. For example,

a face decision rule would be:

If there is a dark object
If there is a second one beside it {

If there is a third below and between them {
If there is a fourth directly below the third {
Then there is a face

}
}

The face locator is two subroutines in the program FACE.C

in Appendix B. The first is called FACEMAP and it has the

decision rules as shown above. It calls the second routine,

called FEATUREMAP, which lists all the facial features it can

find in the input st ,ne. FACEMAP uses the information in the

feature lists to locate and list all the faces in the scene.

Along with each facial location, FACEMAP stores feature edge

locations that will be needed to window the face.

3-32

- . -*:~.* ,Xp

Windows

When a face is located, it is stored to disk and infor-

mation about its feature locations are stored in an array.

Figure 3-18 shows all the measurements that are stored for

the face. All the measurements are taken using the top

corner location of the face as a reference so when the face

is displayed on another area of the monitor, the measure-

ments remain valid.

The measurements in Figure 3-18 allow the face to be

partitioned into the six windows shown in Figure 3-19. The

windows are defined as follows:

1. Left Half of Head
2. Right Half of Head
3. Top Half to Nose
4. Internal Feature Area
5. Left Half, Internal Features
6. Bottom Half, Nose to Chin

These windows were selected based on combining the best

results of Smith's and Russel's windows as follows:

1. Windows 1 and 2 solve the symmetry problem
discussed in Chapter 2. Using the elliptical
mask technique should cause these windows to
look more like Russel's windows than Smith's.

2. Window 3 yeilded high scores as shown in
Figure 2-8. Smith could not use this window
because he had only internal feature infor-
mation available. Russel's window 6 (a similar
window) yeilded good results (Russel, 1985:6-11).

3. Windows 4 and 6. Smith And Russel used only
one side of the face for these windows so
they would not be symmetrical. They lost
information however by placing the windows
into the corner of an array prior to cal-
culating a gestalt. What they lost was the
positional relationship between features on
the face. This will be discussed more in the
following section.

3-33

, " " " " ." ." " % .A •" ." ." ". ",.'. ". ". '.",2 ." ," . ". ". , ".'%" .L .% .%\ L% ' - '-.' "• -'- J . " - -' - 1

WI cx

Ireye

W* center

leye

S(x y)--

beye tey

tncse

rcuth " dy

1%
°

'I

%.%

%"" 'Figure 3-18. Measurements of Facial Features

t.

l-r* '"

33

W.. Wv%
PO IV W, 4.7 -~ W,

bnorm, imj; 1

P-Mks

2V

I I,

,'

Figure 3-19. New Window Set

3-35

IL 9,IVXW% .

4. Window 5 was used by both Smith and Russel
with good results. Russel's windows 1, 2,

-~ and 4 were his highest performance windows
~ ~..>(Russel, 1985:6-11). The present windows

1, 2, and 5 match Russel's windows.

A Gestalt Calculation

The gestalt calculation has not been changed from the

original algorithm on the Data General system however, three

enhancements were made. The first was to speed up the

calculation, the second was to increase the resolution of

the results, and the third was to increase the separation

of faces in the recognition database.

To speed up the gestalt calculation, the size of each

window was provided to the subroutine responsible for per-

forming the calculation, CORTRAN16. This subroutine feeds

one line (row or column) of the window at a time into the

1-D transform subroutine, RTRANSB. Instead of feeding all

lines of the window into the l-D transform, CORTRAN16 now

stops with the last line that contains scene information.

So if the window size is smaller than the size of the

gestalt array, fewer calculations need to be performed.

Figures 2-7, 2-9 and 3-20 all show cases where the window

information does not fill the gestalt arrays. The gestalt

calculation for all six windows of a face now takes less

than 3 minutes to complete, compared to Russel's 8 minutes

(Russel, 1985:5-51).

To increase the resolution of the gestalt calculation,

the gestalt array (where the window information is put) was

3-36

4'

L~ <~,

.4

j.I
p4
'U
j.i
In
a,
0

.4-4

C,
U
C,
U
'U
-I

.4. 04

(S
0
'0
C

0

m

a)
La

>4-

.4-4

I&.

.4. -

.4..

.4.

.4'.

d. 3-37
.4.

.4.

.4.

-4.

A -~

*

increased from 64X64 pixels to 128X128 pixels. This also

allows the recognizer to handle faces larger than 64X64, the

previous size limit (Smith, 1986:5-8).

To increase the separation of faces in the recognition

data base (increasing the accuracy) an idea suggested by

Russel was tried in the AFRM (Russel 1987). This idea was

to maintain the positional relationships between features on

the face by placing the windows into the gestalt array in

the position that they appear on the face. Figure 3-20

shows how the windows are now placed in the array (no longer

in the upper left corner). Now instead of a gestalt value

being referenced to the corner of the window, the gestalt

value for each window is referenced to the corner of the

whole face from which it came. To see if there was any

difference in the separation of faces, the gestalt values

were calculated for a set of six faces (3 of subject LL and

3 of subject JS) with both windo4 placement techniques.

Table 3-1 shows the average gestalt values obtained for each

subject. Comparing the separation of the average gestalt

values for these subjects resulted in Table 3-2.

The separation of gestalt values was better for all the

windows, when the windows were placed in the gestalt array

based on facial placement, so this technique was used. One

additional change was required to make this technique work.

In order to scale the gestalt values to a standard size face

the scale factor had to be calculated using facial size in-

stead of window size as shown in Figure 2-12.

3-38

-' -. .-. " " •' , . -. . - - - -- . . . " " .' ' - -' - - '- • "- - . "-* .

Table 3-1. Gestalt Values for 2 Window Placement Techniques

Windows Placed in Windows Placed by
Corner of Array Facial Location

LL(X,Y) JS(X,Y) LL(X,Y) JS(X,Y)
1 21,50 26,58 23,51 27,60
2 12,56 17,67 47,59 59,69
3 38,36 44,45 36,39 43,50
4 39,54 45,54 37,59 44,59
5 25,51 29,52 23,56 27,58
6 39,95 49,94 37,100 48,100

Table 3-2. Separation of Gestalt Values

Best Separation with Placement
Window # Referenced to corner of:

1 Either
2 Face
3 Either
4 Face
5 Face
6 Face

3-39

g" e 7w

Recognition

The algorithms described up to this point have been

designed to re-create the ideal image acquisition conditions

that Russel had in 1985, but with no human intervention al-

lowed. Russel had fixed lighting and background conditions,

a fixed setting on the camera, and operator input was allowed

(which provided the AFRM with the exact edges of the head).

The AFRM had high recognition scores when it was given

faces that met all of Russel's conditions. Russel's results

are shown in Table 2-1. When conditions were allowed to

vary, the recognition accuray dropped, as shown in Table 3-3.

Table 3-3. Smith's Test Results (Smith, 1986:5-14)

Number in Database : 20
Number Recognized as 1st Choice : 12
Number Recognized as 2nd Choice : 4
Number Recognized as 3rd Choice : 2
Number Recognized as 5th Choice : 1
Number Recognized as 8th Choice : 1
Absolute Correctness = 0.60
Average Reduction in Uncertainty = 0.9525

The new preprocessing, location, and windowing algorithms

should cause an increase in accuracy when used with the

original recognition algorithm, so Russel's algorithm "REMID"

was implemented as the subroutine, "RECOGNIZE" in FACE.C, and

tested. The distance measurement used in RECOGNIZE for each

window (w) is shown below (Russel, 1985:4-40a) and is mul-

tiplied by a performance factor for the window (w).
2 .2

-1 (gix-gux) (giy-guy)

v[id][w] exp{ - 2 +-- -2 --------- -]

1.4 (2*sigix) (2*sigiy)

3-40

•% . .%, . . o . . .o• .% . % . % %p , . • . . . - .V. . .

I

where v[id[w] - the distance from candidate (id) to the
*unknown individual for window (w).

gix,giy = X,Y coordinate values of previously
stored candidate (id).

gux,guy = X,Y coordinate values for an unidentified
individual.

sigix,sigiy = X,Y standard deviations for person (id).

The recognition algorithm was tested with and without window

performance factors and the results are given in Chapter 5.

Figure 3-21 shows a typical output from the recognizer where

the top image is the person to be recognized, and the bottom

images are pictures of the three closest individuals in the

database.

Summary

This chapter presented the changes made to the AFRM as

part of this thesis effort. Discussion of changes was kept

at the algorithmic level and was kept as independent of

implementation as possible. Chapter 4 will describe how all

the algorithms were gathered together into a complete AFRM

program and implemented on the Micro-VAX II computer.

3-41

44.

N
-4

3-42

IV. Implementation

The first section of Chapter 3 discussed the need for a

new environment for the AFRM. The Data General system could

not adequately provide the speed and memory needed by the

AFRM so a Micro-VAX II was chosen as the new host computer.

This chapter discusses the details of implementing the AFRM

on the Micro-VAX II designated SMV2A. Operational details

are provided by the User's Manual given in Appendix C.

Software

Software for the AFRM was written in VAX C version 2.0.

The software has to be linked to several libraries including

the Imaging Technology (ITEX) library of image processing

subroutines. Appendix C describes the linking requirements

in detail. Appendix B contains the source code for the AFRM

and a list of the required ITEX subroutines.

The Micro-VAX uses the MicroVMS V4.2 operating system,

however the AFRM code can be easily modified for use on other

systems. There are only two direct references to the oper-

ating system by the AFRM code. The first is a call for the

operating system to delete files using the "system()" command

(Kernighan and Ritchie, 1978:157). The second is a reference

to directories and subdirectories where files are stored, and

the directory structure is dependent on the operating system.

4-1

555 " 1 € ¢ f " ' s. " ." "." " .5... -. 5 -.--.- S.S 5 . " "" - -

The AFRM is located in a directory on the SMV2A Micro-VAX

called FACE. It can be accessed by logging on with username

"FACE" (no password is required). The User's Manual des-

cribes how the AFRM is protected against accidental change

and erasure and how the protection can be removed in order to

modify the software. The AFRM database files are located in

a subdirectory called "FACE.DBASE".

Program Structure

The source code for the AFRM, called FACE.C, contains all

the algorithms described in Chapter 3, all the code necessary

for maintaining a facial database, and the menu structure

shown in Figure 4-1. When a user logs on to SMV2A (as FACE),

the main menu is displayed on the computer screen. This menu

provides access to the individual AFRM algorithms and access

to the database and demonstration options that will be des-

cribed in this chapter. Descriptions of all the menu options

are given in the User's Manual in Appendix C.

The AFRM menu structure is set up so that a user can run

each algorithm independently of all the others. In addition,

an option called "Total System" is provided that runs all the

algorithms in series as shown in Figure 4-2. No operator

inputs are required once this option is selected except for

selecting which camera to use and when to quit. Figure 4-2

shows the time spent in each algorithm and the time required

for each loop. The subroutine in FACE.C that is represented

by this flowchart is called "AFRM)".

4-2

.i

*Acquisition of Images *

0: Return to Main Menu

1: Stationary Target
S..**Main Menu **2: Moving Target

1: Acquire Images 3: Load Image from Memory
2: Find Faces 4: Save Image in [FACE]
3: Gestalt and Identify /Save

5: Set Camera Port
4: Display Contents of Dbase 6: Camera Check
5: Delete a Subject 7: Re-Initialize Hardware
6: Delete an Image
7: Train

to 8: Demonstration
**Demonstration *

0: Quit 0: Return to Main Menu

1: Identify a Person
2: Total System

Figure 4-1. AFRM Menu Structure

4-3

loop 3
< 4 minutes

loop 2
30 sec

[< 1secs- Acquire Image i

[Is there a moving target? N
SYes

3 see

Acquire a Final Image

(lets target get ready

II,-

< 30 sec I

[I s there a Face(s)? No

Yes

JI

3minutes
Gestalt Face(s)

< 30 secl

Recognize Face(s)j

iQuit?J

Yes

R~eturn to Menu

Figure 4-2. Total System Option

Sm-.e

4-4

;, '? : .; , : . . : , _,': v :' ."... ..- "-.,...-.'..'.-..,-.-. .2 " ,.;-'. ,.. , ...-. . ..-.- _..- --- ,,,

Database Design

A database was written in order to maintain the gestalt

files of all subjects entered into the AFRM. This includes

the files for subjects that the AFRM is trained with, and

extra files used for testing the recognition capabilities of

the AFRM. When the AFRM is not running, all the gestalt data

are kept in two files called TRAIN.DAT;I and OTHERS.DAT;l.

These files are ASCII text files, so they can be displayed on

the computer screen and printed to a printer. Examples of

these files are shown in Appendix D. The database software

is contained in subroutine "MENUl" and is supported by the

following subroutines which are all contained in FACE.C:

COPYFILE GETINT
DEL READFILE
DISPLAY WRITEFILE

When the AFRM is first activated (by logging on), the two

disk files are read into arrays in memory. The contents of

these arrays are modified using Main Menu options 3 through 7

while the AFRM is running and when option 0 (Quit) is selec-

ted, any modifications are written to disk. It is important

that the AFRM is terminated only by using the Quit option,

because all other methods of terminating the program (CTRL-C,

CTRL-Y, etc) will prevent the modified array data from being

stored to disk. The method used to prevent this potential

problem is discussed in the User's Manual.
p

*The arrays used to hold gestalt data are implemented

using C Structures so that subject names, file versions and

gestalt values can all be held in the same array. The two

4-5

structures are called TLIST and ILIST and the contents of

these structures are global, available to all the subroutines

that need to access them. Main Menu options allow the user

to add to (by training), subtract from (delete trained sub-

jects or individual images), and display the contents of the

structures.

The gestalt data files are stored on disk in a directory

called [FACE.DBASE] along with all the picture files. The

picture files are stored by subject name and an extension

that identifies the status of the subject: IMG files are

pictures that the AFRM has not been trained with, and PIC

files are pictures the AFRM has been trained with. These

extensions are automatically changed by the AFRM when a sub-

ject is moved from one area of the database to the other.

The picture files are also stored with version numbers that

match the version numbers in the data files, so the gestalt

file is always linked to the photo it was obtained from.

Summary

This chapter has described how the AFRM was implemented

on a Micro-VAX II. Additional information can be found in

the equipment list in Appendix A and the user's manual in

Appendix C. A more detailed description of the AFRM code

can be found in the comments within the source code given

in Appendix B.

4-6

S . .-. '-; . . * v
-

V. Test Results

This chapter presents the results of testing the AFRM

face location and recognition capabilities, and discusses

what these results mean.

Effect of Camera Settings on Performance

The brightness normalization algorithm presented in

Chapter 3 converts all scenes that are input into the AFRM,

into normalized scenes that all have the same brightness

level, or DC term. Since all brightness variations are now

always around the same center value (128), it is easy to

decide which areas are "dark" and which are "light" in a

scene. The brightness normalization algorithm allows the

AFRM to process scenes with a wide range of lighting

conditions and allows the operator to use a wide range of

camera f-stop settings.

The gestalt calculation used in the AFRM is basically a

center of mass calculation where dark regions on the face

have more "mass" than light regions. The ability to locate

a face is dependent on finding the high "mass" areas of the

face in a consistent manner. These areas do not change much

when the camera is out of focus. They do start blending in

with the rest of the face but they can be located in very

blurred scenes. Since the location of facial features does

not change with camera focus, faces can still be recognized.

5-1

.4te

The gestalt calculation is also able to handle faces of

different size. By scaling all faces to the same size, or

in this case, scaling their gestalts based on a standard

sized face, the recognition results become independent of

scale. The location algorithm is independent of scale by

allowing it to look for variable sized features and re-

.5 quiring it to assemble faces out of features that match

each other in size. The Dage camera has a zoom lens which

affects the size of the faces entered into the AFRM.

-~ To verify the ability of the AFRM to deal with the

variables discussed above (f-stop, focus, and zoom), a test

was performed in which each variable was set three times

and everything else was held constant. The results of the

test are shown in Table 5-1.

One constant was difficult to acheive and it is assumed

that most of the variation in gestalt data is due to this

problem. This "constant" was the subject in the input

scene. Since the face used for this test had to be held

constant, a subject was asked to sit as still as possible

for several minutes while a series of pictures was taken on

video tape.

Table 5-1 shows the three variables in the first column

and the image version number assigned by the AFRM in the

second column. -n all, there were ten images entered into

the AFRM. The AFRM was not trained with the subject prior

to the test. The last two columns show the distance to the

closest candidate in the database and the candidate's name.

5-2

Mw-rlVw.wI' WW~~ii% Z-I-.~-W-1T'- -4771 VI R I *T-Wr J 27 Kr '7V VK~ . V MT *

The AFRM was trained with the first four images entered

during the test and thereafter the AFRM recognized the

subject as "fmooney", the correct result. The candidates
"mkabrisky" and "bgeorge" continued coming up, but as the

second choice after the AFRM was trained.

The AFRM started assigning version numbers from 1 after

the AFRM was trained with the first four because once an

image is used for training, it receives a different file

name (It is a .PIC file, no longer .IMG). At the beginning

of the test the AFRM was trained with fourteen subjects.

At the end of the test, image files for all the subjects

were tested to ensure that the AFRM still recognized them

correctly (that nobody else was recognized as fmooney).

Variable # Win 1 Win 2 Win 3 Win 4 Win 5 Win 6 #lDist Candidate
5.6 1 25,54 45,54 36,38 36,61 22,58 38,101 .358 nuayo

F- 8 2 22,62 44,71 33,51 33,62 22,60 35,97 .603 mkabrisky
Stop 11 3 22,58 47,63 38,45 36,65 22,63 40,97 .544 bgeorge

16* 4 23,64 46,64 37,50 37,64 23,62 39,98 .503 bgeorge
1 22,64 44,68 33,53 33,62 22,60 38,97 .659 fmooney

Focus 2 22,65 43,70 34,53 34,63 22,60 36,94 .639 fmooney
3 24,57 44,60 37,44 37,63 24,60 39,97 .736 fmooney
4 24,62 46,66 35,51 35,62 24,60 38,97 .758 fmooney

Zoom 5 23,64 47,73 35,55 35,64 23,61 38,96 .695 fmooney
6 23,58 50,63 36,47 38,63 23,61 40,97 .718 fmooney

* At this point, train with 1st 4 images and set
F-Stop = 8. All images from here on should be
recognized as fmooney.

Table 5-1. Effects of F-Stop, Focus and Zoom on
Location d Recognition Performance

5-3

!'

False Alarms and Missed Faces

The new face location algorithm was compared to the

original, signature-based, algorithm in Chapter 3 and was

found to be less prone to false alarms (finding faces where

none exist). This result is good as long as the location

algorithm doesn't start missing real faces in order to keep

the false alarm rate down. To see if this was occuring, the

two location algorithms were tested on a set of twenty scenes

shown in Appendix F. Ten scenes had faces present and ten

did not. The scenes covered a large range of backgrounds,

lighting conditions and scale. Table 5-2 shows the results

of the test for each scene. Table 5-3 summarizes the results

and clearly shows that the new face location algorithm, AFRM,

performs better than the original algorithm, FACESIG.

6 Scenes With Faces Without Faces
FACE SIG AFRM FACE SIG AFRM

1 F,A F 11 N N
2 NA F,A 12 N N
3 N N 13 A N
4 F N 14 N N
5 F N 15 N N
6 N F 16 N N
7 F F 17 A,A N
8 N F 18 A N
9 F F 19 rl N

10 F F 20 A N

(F-Face, A-False Alarm, N=No Face]

Table 5-2. Face Location Test

FACE SIG AFRM
False Alarms
(20 scenes) 7 1
Faces Found
(10 faces) 6 7

Table 5-3. Summary of Face Location Test

5-4

Recognition Score

Several tests were performed to measure the recognition

capability of the AFRM. This capability is measured using

two scores. The first score is the percentage of time the

AFRM is absolutely correct in recognition (the list of can-

didates put out by the AFRM in response to an unknown input

has the proper answer in the top position). The second score

is the percentage reduction in uncertainty. This score,

developed by Russel gives an indication of how good the AFRM

is, when it is not absolutely correct (Russel, 1985:6-8). It

provides an indication of where the correct answer is in a

list of candidates (for example, it might always be in the

top 3 in a list of 20). For all the tests, the AFRM was

trained with four pictures each of ten subjects. A fifth

picture of each subject was used for testing.

The first test was to measure the recognition performance

obtained by using a single window from the face. This was

done for each window and the results are shown in Table 5-4.

This table shows where the AFRM placed the correct answer in

its ordered list of candidates. For example, using window 1

it placed the correct answer for a picture of llambert in the

fifth position.

Table 5-4 shows that some windows performed better than

others in this test. In this case, window 4 alone was enough

to correctly identify all ten individuals in the database.

This does not mean that all the other windows can be dis-

carded however, because they do provide useful information.

) 5-5

V

As the database grows, window 4 alone will not be sufficient.

0 .Also, a combination of the data from all six windows provides

the same recognition result (100% correct) but with a higher

confidence level.

Input Window #
Photo 1 2 3 4 5 6

llambert 5 1 1 1 1 3
efretheim 2 2 1 1 2 1
mkabrisky 2 1 4 1 3 2
ecrawford 4 3 2 1 2 3
mdrylie 1 2 2 1 1 1
mmayo 3 3 2 1 1 3
mlambert 1 1 1 1 1 1
jsillart 1 1 1 1 1 2
dlambert 1 1 1 1 2 1
gdawson 1 2 1 1 3 1

% absolute .50 .50 .60 1.0 .50 .50
correct

% reduction .89 .93 .94 1.0 .93 .89
in uncertainty

0 Table 5-4. Recognition Performance for Single Windows

Confidence Level

The second test was performed to get an indication of the

confidence that should be placed on the results. Confidence

should be based on two factors, the closeness of the unknown

photo to a given candidate's data, and the difference in

distance to this candidate and all others. Chapter 3 shows

that distance, as measured by the AFRM, varies from 1.0 (a

perfect match) to 0.0 (no similarity at all). An example of

calculating confidence level follows.

5-6

j

WUW~iuwvw6-wvrnmwvwlwvvw% wl-%V-vwlrvrv wglvl~~r-W 1W-V1 . - - 4

Suppose the AFRM is to recognize a photo of
llambert and it puts out the following list
of candidates:

1. llambert distance - .93
2. mkabrisky distance - .92
3. srogers distance - .11

It is clear that the llambert file closely
matches the input photo, but so does the
mkabrisky file. The srogers file is quite
far from the input photo. The confidence
level assigned to both candidates 1 and 2
should be nearly the same (about 50%). Now
suppose the AFRM has put out the following
list: 1. llambert distance - .49

2. mkabrisky distance = .01
3. bgeorge distance - .002

If it is assumed that the AFRM was trained
on llambert, then the AFRM is correct. The
second closest candidate is much farther
away than the first candidate so candidate 1
should be accepted with a high level of
confidence (maybe 90%). But candidate 1 is
also a significant distance away from the
unknown photo too. What if the input photo
does not represent anyone in the database
and a distance - .49 comes out for llambert?
To cover this situation, the magnitude of
the distance must be considered in the
confidence calculation.

This example has shown that a low distance number should

reduce the confidence level and a low difference between

candidate distances in the ordered list should reduce the

confidence level. Table 5-5 shows how the addition of

windows can improve confidence level. The table starts with

the best window and adds windows (ordered by window perfor-

mance shown in table 5-4) as shown across the top of the

table. Each entry in the table represents the distance to

the first and second candidates in the ordered list. In all

cases, the first candidate was the correct answer (because

the table starts with window 4, it has 100% absoulte correct

*recognition results).

5-7

Ui

I

Input Windows Used
Photo 4 +3 +2 +5 +1 +6

llambert .7881 .7101 .7514 .7396 .6580 .6626
.6583 .5068 .5163 .4837 .4546 .4386

efretheim .9906 .8769 .8018 .7548 .7505 .7380
.8476 .7458 .7170 .6959 .6190 .5592

mkabrisky .9826 .6696 .7456 .6435 .6306 .6469
.7232 .4340 .4509 .3669 .3261 .3558

ecrawford .7019 .6870 .6806 .6309 .6230 .6241
.6620 .5168 .5946 .4954 .5218 .5200

mdrylie .8610 .8978 .8305 .8368 .8242 .8257
.4374 .4047 .4990 .4135 .4144 .4239

mmayo .9563 .8741 .6773 .6410 .5813 .5787
.9270 .7529 .6421 .5931 .5524 .4972

mlambert .9980 .8655 .8888 .9059 .9157 .8997
.0009 .0598 .2066 .1678 .1784 .1607

jsillart .8532 .9119 .8893 .8794 .8806 .8367
.5552 .3599 .3888 .3258 .3783 .3577

dlambert .4540 .6059 .6875 .6705 .6179 .6337
.1031 .1091 .1709 .1760 .1565 .1427

gdawson .2220 .4512 .5136 .4949 .4891 .4912
.0797 .1818 .3637 .4717 .4197 .3856

Table 5-5. Distance to First Two Candidates in List

At first glance, the data in Table 5-5 appear to contradict

the ideas presented above. In eight out of ten cases, the

distance to the correct candidate has decreased by the

addition of windows (only dlambert and gdawson distances

increase). But the distance to the second candidate has also

increased as shown in Table 5-6. This table shows the diff-

erence between the pairs of numbers in Table 5-5. This

difference increases for seven out of ten of the subjects,

increasing the confidence level that should be assigned to

the ordering of the candidate list.

5-8

S.I

Input Windows Used
Photo 4 +3 +2 +5 +1 +6

llambert .1298 .2043 .2351 .2559 .2034 .2240
efretheim .1430 .1311 .0848 .0589 .1315 .1788
mkabrisky .2594 .2356 .2947 .2766 .3045 .2911
ecrawford .0399 .1702 .0860 .1355 .1012 .1041
mdrylie .4236 .4931 .3315 .4233 .4098 .4018
mmayo .0293 .1212 .0352 .0479 .0289 .0815
mlambert .9979 .8057 .6822 .7381 .7373 .7390
jsillart .2980 .5520 .5005 .5536 .5023 .4790
dlambert .3509 .4968 .5166 .4945 .4614 .4910
gdawson .1423 .2694 .1499 .0232 .0694 .1056

Table 5-6. Difference Between Candidate 1 and 2 Distances

Up to this point, confidence level has been discussed but

no values of confidence have been calculated. Russel calcu-

lated a probability value to indicate how sure the AFRM was

of the candidate ordering, but this probability was based on

the similarity between an unknown individual and a candidate

(the actual distance number put out for the candidate) only

(Russel, 1985:4-43). It was not based on the difference

between distances to the rest of the candidates in the list

(like numbers found in Table 5-6). In addition, an equation

to calculate a confidence value may be dependent upon the

number of individuals in the database. Since insufficient

data are available at this time, no confidence values have

been calculated.

Window Performance Factors

A third test was performed to see if differences between

candidates could be increased further by adding window per-

formance factors. Russel assigned higher weighting factors

5-9

to the better performing windows before combining window

measurements into a final distance value (Russel, 1985:4-43).

This gave the better windows more influence in the recogni-

tion process. In order to see what effect window performance

factors could have on the recognition performance, the window

factors were set to fixed values (not determined by contents

of database as done in Russel's thesis). Table 5-7 shows

the two sets of performance factors tried. The second set

gives more weighting to the windows determined as best by

Table 5-4.

Window # Set 1 Set 2
1 1.0 0.6
2 1.0 0.9
3 1.0 1.2
4 1.0 1.8
5 1.0 0.9
6 1.0 0.6

4 Table 5-7. Window Performance Factors

No conclusions can be drawn by the test results becaus t:r,

separation of candidates increased for five sub3erts ar

decreased for the other five subjects when set 2wa,

Both sets of window performance factors yeilded 1'

correct recognition scores. A larger databa-

before window performance factors will make a - '.

the recognition performance.

Summary

These test results indicatp h ' ',

at least as well as the prt,'-,;' , "

."--

-t 09 EVALUATION AND ENHANCEMENT OF THE WIT AUTONONOUS FACE V32
RECOGITION NACNIIE(U) AXE FORCE INST OF TECH
HAXGHT-PFITTERSON RFD ON SCHOOL OF ENGINEERING

WICLRSSIFIED L C LMIMERT DEC 87. WITAVEENG/97h-35 F/O 12/9 ML7EEE.hhhE

IIII1 I III I1

N IO L I' L
p.'T

N 'I , ['-~
0'

L 1181

11mom 111111111
1 1 401 iiji-.-

MICROCOPY RESOLUTION TEST CHART
NATIO)NAL HURT AU 01 F IAN[,IAFF,, i

%..'-
%,..

:-'
.

W u v i irw gy ~~ .p*rM TI. NZ RFV RKXA ROTMIRM WM M-R w
W

S. -,-

in all areas. The face location algorithm has been improved

with no adverse effect on the recognition scores. The

recognition scores appear to be better than the scores shown

in Tables 2-1 and 3-3 however there are fewer subjects in the

database (presently at 15 subjects and still 100% correct).

In addition, all algorithms are faster and the AFRM can

process a wider variety of input scenes.

5-11 N

t .!

V.Conclusions and Recommendations

This chapter presents conclusions of this thesis effort

and recommendations for further research with the AFRM.

Conclusions

The AFRM is proof of the capability of recognizing a

human face using a machine. The AFRM does this recognition

quickly and accurately. It has been based upon theories of

how the human physiology works, and attempts to model pro-

cesses that are physically realizable by the eyes and brain.

Whether the AFRM incorporates techniques actually used by the

human visual system is, of course, unknown since these brain

mechanisms remain undescribed at present.

During this thesis effort, the automatic face location

and windowing capabilities have been enhanced to the point

where the AFRM is completely autonomous. The algorithms have

been sped up to the point where real-time processing can take

place (it is only seconds between input and output). The

AFRM has been successfully implemented on a modern computer

with readily available hardware and software. These factors

make the AFRM more useful as a research and teaching tool,

and pave the way for further understanding of human recog-

nition capabilities.

- 6-1

Recommendations

..- In addition to the recommendations made by Smith and
Russel that have not yet been implemented, the following

areas should be explored:

I. To further improve image pre-processing, the following

suggestions:

1. Implement processing of color images to increase

information available to the recognizer, improve

separation of the head from the background, and

possibly allow definition of a better facial

feature set.

2. Implement processing of images from a pair of

cameras, utilizing binocular disparity techniques

to separate the head from the background. This

may also provide information useful to the

recognition process by having available, two

images of the subject each taken at the same

time but different angles.

3. Implement algorithms in a parallel hardware

archetecture, creating a model of the human eye.

II. To improve face location capability:

1. Combine the two face location techniques discussed

in this thesis to find more faces while reducing

false alarm rate. Table 5-2 shows that a com-

bination of the two techniques could result in

90% of the faces being found, with only a single

false alarm.

o6-2

7

-

2. Come up with a better set of facial features to

use in place of the dark areas now being used.

III. To improve recognition capability:

1. Study effects of head rotation on recognition

score and find a way to overcome the present

limitations.

2. Implement an algorithm with a truely constant

recognition time. The present algorithm is

very fast, but may slow down when the database

grows into the hundreds or thousands.

3. Thoroughly exercise the AFRM, training it with

many more subjects to find out how it performs

and what its limits are. Develop algorithms to

overcome these limits.

4. Add more information to the recognizer by

improving the quality of the images sent to the

gestalt algorithm. This might be done by using

the brightness normalized faces without the

contrast enhancement.

5. Add more information to the recognition process

in the form of voice data, subject's height,

eye color, etc.

IV. To improve availability of the AFRM as a research or

teaching tool:

1. Implement the AFRM on an IBM PC/AT computer.

An Imaging Technology, image processing board

exists which would support this effort.

6-3

%/, e.

V. To more closely model the human form of face recognition:

e1. The AFRM is required to perform recognition on a

single, sometimes poor quality image and produce an output

list of candidates. There is some difficulty in expressing

the confidence level that should be placed on the ordering

of this list. Humans too have doubt sometimes in their own

recognition capabilities. A human does not usually have to

produce an answer from one quick look however. The human

has a continuous look-and-update recognition process. Any

doubt that exists in the viewers mind causes additional

acquisition and processing of data until finally, all doubt

is removed.

The AFRM should be given the same chance to acquire addi-

tional information that the human has. This could be in the

* form of multiple images of a subject. The AFRM would first

need to be made as fast as possible to allow for real-time

processing (even a loss in accuracy to accomplish this might

be allowable). The greatest speed increase needed is in the

3 minute gestalt calculation. Appendix G shows how the 3

minute process can be reduced to 5 seconds. After imple-

menting Appendix G, an example of multiple image processing

might be as follows:

1. llambert 1. srogers 1. bgeorge 1. mmayo
2. mkabrisky 2. mmayo 2. srogers 2. srogers
3. srogers 3. efretheim 3. llambert 3. efretheim
4. bgeorge 4. mkabrisky 4. mmayo 4. llambert
5. mmayo 5. llambert 5. efretheim 5. bgeorge

Table 6-1. Output Lists for 4 Images of a Subject

6-4

r

I

Average positions of candidates for all four images, lowest

number wins first place in list (give them a number 6 if not

in top 5 of a list).

efretheim - (6+3+5+3)/4 - 4.25
srogers M (3+1+2+2)/4 - 2.0
mkabrisky - (2+4+6+6)/4 - 4.5
mmayo M (5+2+4+1)/4 - 3.0
llambert - (1+5+3+4)/4 - 3.25
bgeorge - (4+6+1+5)/4 - 4.0

Table 6-2. Calculation of Average Position

The top candidate in this case is "srogers" because this name

came up closest to the top of the candidate list on average.

The output list would be as follows:

1. srogers
2. mmayo
3. llambert
4. bgeorge
5. efretheim

Note that this technique would not require a candidate to

ever place in the top position, and would probably help to

increase the distance between false faces and real faces.

6-5

-.-.- - -- . . " - -' " -' ----' -.. " , . - i, -, "<-INC:"%: -. -,

Appendix A

Equipment List

toW

S.A-1

N .

The following equipment is used in this thesis:

1. Data General Eclipse S/250 Computer System

2. Data General Nova 2 Computer System

3. Octek 2000 Video Processing Board

4. Dage 650 Video Camera

5. Panasonic WV-5490 Monochrome Monitor

6. Tektronix 4632 Video Hard Copy Unit

7. Micro-VAX Computer System

8. DeAnza Systems Color Image Display System

9. Imaging Technology Series 100 Image Processing Board

This equipment, with documentation, is available in the

AFIT Signal Processing Lab.

.A-2

A-2

Appendix B

Software Listings

Page

B-2 SUBDEMO.C Demonstration of (2) Real-time Subtraction
Techniques

B-4 MTI.C Demonstration of Automatic Target Detector
and Isolation Algorithm

B-6 BRIGHT.C Demonstration of Brightness Normalization
Algorithm

B-7 GRAPH.C For Graphing a Line From an Image

* B-8 FACESIG.C The Face Location Algorithm Based on
*" Facial Signatures

B-12 FACE.C The complete Autonomous Face Recognition

System

B-47 ITEX-100 A list of ITEX-100 routines used by FACE.C

All programs listed above can be run independently of FACE.C.

In addition, FACE.C contains copies of the others as needed

so that FACE.C is the complete AFRM. FACE.C must be linked

to the ITEX library as shown in the user's manual.

B-1

= % % % _%._ % _ _ _% % . .% % % % ' - - . =- .% ...- - . .% -% .B-i- - -. ,

* Name: SUBDEMO.C Demo of real time subtraction techniques. *

* Author: Laurence C. Lambert - 1987*

**AuhrLaeneCLmbt-197*
*include "sys$library:stdio.h"
include "duaO:[itilOO.itexJstdtyp.h"include "duaO:[itilOO.itexJitexlOO.h"

main()

unsigned base = 0x1600;
long mem = Ox2OOOOOL;
int flag = 1, block =8;

sethdw(base, mem, flag, block);
initialize();
subdemo(1);

subdemo(2);I

#define AO (short int)aO(i)/* These transformations are used in the */
#define aO(i) (i & Ox003f) /* feedback lut for real time subtraction */
#define Al (short int)al(i)/* demo. This software was created using *1
#define al(i) ((i & OxOfcO) >> 6) /* "Toolbox" (see FG-1O0 user's
#define DO(i) [data &= OxffcO; data J= (i & OxOO3f); I /* manual. *

-p #define D1(i) { data &= OxfO3f; data J= ((i << 6) & OxOfcO);) /**** */
#define INPUT 0x6000
#define abs(i) (((i) < 0) ? (-(i)) : (i))

xforml(addr, initial)
unsigned addr,initial;{

register unsigned short i = addr;
register short int data = initial;
DI(AI);
DO(abs(A1 - AO));
return((unsigned)data);
I

xform2(addr, initial)
unsigned addr,initial;(
register unsigned short i = addr;
register short int data = initial;
DI(AO);
DO(abs(Al - AO));
return((unsigned)data);

B

B-2

'.4

'isubdemo(version) /* demo. of real time subtraction capabilities */
int version; /* of the itex system. One of these algorithms */

/* may be used in the AFRM (see demo menu)
register unsigned **/
rtsubtract(O);
setlut(O,O);
setinmux(6);
if (version == 1) (
printf("\n\n\n Subtracting images as follows:");
printf("\n\n For Image = 1 to n, Display = 2-1,3-2,4-3 n-(n-1)\n");
printf("\n This is useful for detecting motion, as anything moving");
printf("\n will be slightly shifted from one frame to the next.");
printf("\n When the target stops, it disappears from view.\n");
grab(l);
swap6();
setinmux(6);
for (i=O;i<OxlOOO;i++) writelut(INPUT,i,xform2(i,readlut(INPUT,i)));

else(

printf("\n\n\nPrepare background image (image #1) and press RETURN.");grab(O);

getcharo;
stopgrab(l);
swap6();
printf("\n\n\n Subtracting images as follows:");
printf("\n\n For Image = 1 to n, Display = 2-1,3-1,4-1,....n-f~n");
printf("\n This is used to display the brightness diff between two");
printf("\n scenes. The resulting ghost shows where the images vary.");
printf("\n Since 1 scene never changes, anything that is diff in");

".' printf("\n the other will show up whether it is moving or not.");
printf("\n A target cannot hide by standing still.\n");

v. setinmux(6);
for (i=O;i<OxlOOO;i++) write lut(INPUT,i,xforml(i,read lut(INPUT,i)));

grab(O);
printf("\n\n\n\n\n\n Press RETURN to continue.");
getcharo;
stopgrab(l);
initializeo;
sclear(O);
return;

B-3
.1

V..

V

* Name MTI.C Demo of moving target detector *

.* Author: Laurence C. Lambert - 1987 *

#include "sys$library:stdio.h"
tinclude "duaO:[itilOO.itexlstdtyp.h"
#include "duaO:[itilOO.itexJitexlOO.h"
static int j,sx,sy,fx,fy;

main()

unsigned base = 0x1600;
long mem = Ox2OOOOOL;

int flag = 1, block = 8;
sethdw(base, mem, flag, block);
initializeo;
rtsubtract(O);
setlut(O,O);
setinmux(6);
for (j=O;j<OxlOOO;j++) write _lut(INPUT,j,xform2(j,read lut(INPUT,j)));
printf(" looking for target.");
snap(l);
snap(l);
while((isolate(8,6,32)) != 1) snap(l);
printf("\n found target, acquiring 8 bit image.");
initialize();
snap(l);

int isolate(thresh,mode,size)
int thresh; /* threshold for detection of target 4/
int mode; ** 6 bit or 8 bit image */
int size; /* determines min. size of target and affects speed. */

/* size is either 16 or 32 pixels. */
int x,y,z;

sx = -1;
sy = -I;
fx = -1;
fy = -1; /* Find top of target *********************************
for (y=size-1; y <= 255; y=y+size){/* This subroutine finds location */
for (x = 0; x < 511; x=x+size){ /* of a moving object. If there is*/
z = brpixel(x,y); /* no moving object, or it is too */
if (mode == 6) z = z & 63; ** small then (0) is returned. If */
if (z >= thresh) /* an object is found then sx,sy, **
sy = y-(size-1); /* fx,fy are set and (1) is re- *1
x = 512; /* turned. This is done so that */
y = 512; /* all future work done on a scene*/

}}} /* is done on a greatly reduced */

B-4

I :- .--- ,'. , - '. , ...-- , " "- .,., . - -- . -: ,-,- '.-'--.- .- " . - .:>: -" .- - - .-. , -: . .

if (sy == -1) return(O); /* area of the scene and hence is */
for (y=256-size; y>(sy+size-1); y=y-size)(/* done faster. Thresh is */
for (x - 0; x <= 511; x-x+size)(1* high enough value to eliminate */
z - brpixel(x,y); 1* video noise but low enough to */
if (mode -= 6) z - z & 63; /* find small brightness differen-*/
if (z >= thresh)[/* ces that may occur between a */
fy = y + size-i; /* Find bottom. * moving object and its bkgnd. .1
x = 512;
y = -1;

M}}
if (fy < (sy + size)) return(O);
for (x=size-1; x <= 511; x=x+size){ /* find left side */
for (y = 0; y < 255; y=y+size)(
z = brpixel(x,y);
if (mode == 6) z - z & 63;
if (z >= thresh){
sx = x - (size-i);
x = 512;
y = 512;

if (sx -1) return(0);
for (x = 512-size; x > (sx + size-l); x = x - size)[
for (y =0; y < 255; y = y + size)(/* find right side */
z = brpixel(x,y);
if (mode == 6) z = z & 63;
if (z >= thresh)[
fx = x + size-i;
x = -1;
y = 512;

if (fx < (sx + size)) return(O);
return(l);I

#define AO (short int)aO(i)/*These are the transforms used in the */
#define aO(i) (i & OxO03f) /*feedback lut for the real time subtract **
#define Al (short int)al(i)/*demo. This software was created by using*/
#define al(i) ((i & OxOfcO) >> 6) /* "toolbox" (see FG-100 manual */
#define DO(i) { data &= OxffcO; data J= (i & OxOO3f);) /* chapt 7) */
#define DI(i) (data &= OxfO3f; data J= ((i << 6) & OxOfcO); *
#define INPUT Ox6000
#define abs(i) (((i) < 0) ? (-(i)) (i))

xform2(addr, initial)
unsigned addr,initial;{
register unsigned short i = addr;
register short int data = initial;
DI(AO);
DO(abs(Al - AO));
return((unsigned)data);

%B-5

9,

£. z A '..

-0* BRIGHT.C : Brightness normalization algorithm *
'"* will process whatever is on monitor. *

" * Author : Laurence C. Lambert - 1987 *

#include "sysSlibrary:stdio.h"
#include "duaO:[itilOO.itexJstdtyp.h"
#include "duaO:IitilOO.itexlitexlOO.h"
struct array[

int data[5121;
1;
static struct array pic[512J,norm[512];
static int col[512J;

main()
I

unsigned base = 0x1600;
long mem = Ox2OOOOOL;
int flag = l,block = 8;
int pix,avg,diff,neigh,x,y,i,j;

sethdw(base,mem,flag,block);
printf(" takes about 15 seconds to process. please wait...");
for (y=O; y<480; y+±) { /* read from video memory */
rhline(O,y,512,pic[y].data);

y = 0;
for (i=O; i<512; i++) {
col[i] = 0; /* setup all columns for first y value "1
for (j=y; j<y+9; j+) coljiJ += pic[jJ.datajij;

for (y=l; y<471; y++) {
for (i=O; i<512; i++) f /* now all columns calculated faster */
colliJ += (pic[y+8J.datalij - pic[y-1J.data(iJ);

x = neigh = 0; /* setup first neighborhood */
for (i=x; i<x+9; i++) neigh 4= collil;
for (x=l; x<503; x++) (/* now all other neigh are calc faster */
neigh += (col(x+8J - col(x-IJ);

avg = neigh/81; /* these four lines are the heart of it all */
pix = picly+41.data[x+41; /* neighborhood size = 9x9 */
diff = pix - avg; 1* center size = 1 *
pix = 128 + diff;

/* for awesome effects try: */
if (pix < 0) pix = 0; /* other sizes, */
if (pix > 255) pix = 255; /* pix=128+multiplier*diff,*/
norm[y+4].datax 4j = pix; /* thresholding result, */

3) 1* etc... "1
for (y=O; y<480; y +)
whline(O,y,512,norm[yJ.data);

B-6

%...................................%;.C~

* Name GRAPH.C*

**Author: Laurence C. Lambert - 1987*

tinclude "sys$library:stdio.h"
#include "duaO:IitilOO.itexJstdtyp.h"
#include "duaO:Iiti1OO.itexlitexlOO.h"I

maino(

int i ,m,x,yz,numline,old,new;
unsigned base = 0x1600;
long mem = Ox200000L;
int flag = 1, block = 8;

* sethdw(base, mem, flag, block);
carea(O,O, 512 ,255 ,0, 256 ,512 ,255);
numline = 256;
printf("\n\n\n which line to graph?(O-255)");
scanf("Xd" , &numline);

* while (numline > -1)[
printf("\n Enter -1 if Okay, or enter new line to graph(O-255).>");
line(O,numline,511,numline,255);
y = numline;
scanf("%d",&numline);

aclear(O,O,512,255,175);
printf("\n\n Plotting selected line.");
y =y + 256;
old = 0;
for (x=O; x<510; x++)
new =brpixel(x,y);
if (new < old) [
for (m=new; m<old+l; m++) {
bwpixel(x, 256-m,O);

else{
for (m=old; m~new+1; m++) [
bwpixel(x,256-m,O);

old -new;

line(0,y,511,y,O);

B- 7

* *Name FACESIG.C face finder that looks for characteristic *

brightness variations (signature) in a thin*
strip of data from the input scene.*

Author: Laurence C. Lambert - 1987
*Based upon technique used on the Eclipse/Nova by E. Smith *

#include "sys~library:stdio.h"
*include "duaO:11iti100.itexjstdtyp.h"
#include "duaO:IitilOO.itexlitex1OO.h"

mnt px[BI,pyIBJ,pzI8I;

static mnt sxtsytfx,fy;

* main()

unsigned base = 0x1600;
long men = 0x200000L;
int flag = 1, block 8;

* sethdw(base, men, flag, block);
sx = 0;
sy = 0;
fx = 511;
fy = 255;
carea(0, 0, 511, 256 ,0, 256, 511, 256);
printf("\n\n Smoothing image.");
blur(0,0,512,256, 3);
if (findface()o 1) printf(" Face not found.");

mnt findfaceo/*looks for face in image. returns 1 if found. 0 if not*/
(1/* masks face with ellipse, and updates sx,syfx,fy.*/

mnt x,y,z,j; /**************************
mnt size,bright ,prevz,point ,direc,prevdirec,nz;
mnt lislope,rislope,loslope,roslope,test,radius,center;

printf("\n\n looking for face ..."1);
for (y=sy; y<(fy+1); y++){
direc =1;

test =0;

bwpixel(0,y,250);/* gives indication of where facefinder is working *
z = brpixel(sx,y);
for (x=sx; x<fx; x=x+2)
prevz = z;
prevdirec = direc;
z = brplxel(x,y);
if (z > prevz) direc = 1;
if (z < prevz) direc = -1;
if (z ==prevz && direc < 0) direc direc - 1;
if (z ==prevz && direc > 0) direc direc + 1;
point =test;

B-8

svitch(point)(
case 0:if (direc < 0 && prevdirec > 0) (/* possible point 1 found*/

test =1;

px(1J x - 2;
pyill Y;
pz[11 =brpixel(px[1J,py[lI);

break;
case 1:if (direc > 0 && prevdlrec <0) (* possible point 2 found *

test =2;

p4[2] x + (prevdirec - 1); /* use center of plateau *
py2 y; /* if on a plateau. *

pz121 brpixel(pxI2J,py121);
bright =pz4

1 1 - pzI2J;
if (bright < 10)
test = 0; /* not enough distance between pts 1 and 2. *
x = px[2J;

break;
case 2:if (direc < 0 && prevdirec > 0) [/* possible point 3 found*/

-' test =3;

px[3] x - (prevdirec + 1); /* use center of plateau *
py[1J y; /* if on a plateau *

pzI31 brpixel(px[3J,pyI3J);

break;
case 3:if (direc > 0 && prevdirec < 0) (/* possible point 4 found*/

test =4;

px[4] =x + (prevdirec - 1); /* use center of plateau if *
py[41 =y; /* on a plateau. *
pz[41 brpixel(px[4J,pyI4]);
if (pzI3J-pzI4] < bright/3 11 abs(pz[21-pzI4I) > bright/4)(
test = 0; /* not enough diff between points 3 and 4 or *
x = pxI2l; /* too much variation between points 2 and 4. *

break;
case 4:if (direc < 0 && prevdirec > 0) (/*possible point 5 found. *

test =5;

px[51 x - 2*prevdirec;

pz[5J brpixel(pxISI,py[5J);
if (abs(pz[l1-pz[5]) > (bright/2)) test = 0;/*too much 1-5*/
lislope = (pzI3] - pz[2I)/(px[3J - px[21); /* test slopes *
rislope = (pzI3] - pz[4J)/(pxI4I - pxI3J);
loslope = (pz(1I - pzI2J)/(px[21 - pxlI);
roslope - (pz[5] - pzI4J)/(px[51 - pxI41);
/* check var of lnner,outer,lft out-in, rght out-in slopes*/
if (lislope>(1.4*rislope) IIrislope>(l.4*lislope))test = 0;
if (loslope>(1.4*roslope) IIroslope>(1.4*loslope))test = 0;
if (loslope > (3*lislope) IIlislope > (3*loslope))test = 0;
if (roslope > (3*rislope) IIrislope > (3*roslope))test = 0;

B-9

/* test physical distance ratios between points *
If ((pxI4I-pxI3J) > (1.3*(pxj3j-px[21))) test - 0;
if ((pxI3J-px[2J) > (l.3*(pxI4J-px[3j))) test - 0;
if ((px[2J-px[1J) > (1.5*(px(51-px[4]))) test - 0;
if ((px[51-px[41) > (l.5*(pxI2I-px[lJ))) test - 0;

4if ((px[51-px[lJ) < 32) test -0; /* face too small *
if ((px[5]-px[1J) > 150) test =0; /* face too large *
if (test .. 0)
x - px[21;
direc - 1;

break;
case 5:size - 1.4*(px[5J - pxjlj); /* approx scale of whole face *

/* test to see if whole face on screen *
if ((px[3]-(size/2)) < 0 11 (px[3J+(size/2)) > 511) test =0;

if ((py(31-(size/2)) < 0 11 (py[31+size) > 256) test =0;

if (test .. 0) / * whole face not on screen *
x = px[2I;
direc = 1;
break;

direc = 1;/* okay, look for nose mouth signature. *
nz - pzI3I;
for (j=(py[3J+l); J<(py[3-.size); j++){
prevdirec = direc;
prevz - nz;
nz -brpixel(pxI3J,j);
if (nz > prevz) direc = 1;
if (nz < prevz) direc = -1;
if (nz ==prevz &&direc < 0) direc = direc - 1;

if (nz ==prevz &&direc > 0) direc =direc + 1;
if (direc < 0 && prevdirec > 0) (/*possible point 6 found*/
test =6;

pxI6J px[31;
pyI6J j-1;
pz[6j brpixel(pxI6I,pyI6j);
if (py[61-pyI3I<(pxI3I-pxI2J)/211py161-pyI3j>pxI4I-pxI2J) I
test = 0;
x - px[21;/*point 6 physically too close to point 3 or *
direc - l;/*point 6 physically too far down. *
break;

j - 512;

if (test == 6) (/*look for point 7 *
direc = 1;
nz = pzI6I;
for (J=(pyI6j+1); J<(py[3J+size); j++)
prevdirec - direc;
prevz = nz;
nz - brpixel(pxI3I,j);
if (nz > prevz) direc = 1;
if (nz < prevz) direc = -1;
if (nz ==prevz && direc < 0) direc = direc - 1;
if (nz ==prevz && direc > 0) direc - direc + 1;

B- 10

if (direc > 0 && prevdirec < 0) (/* possible pt. 7 found*/
test 7;
px[7 1 pxI3J;
py[71Jj-1;
pz[71 brpixel(px[71,py[7]);
if ((pz[61-pz[71) < bright/2)(

test - 0; 1* not enough bright diff between points 6,7 *
x - px[2];
direc = 1;
break;

j - 512;

* if (test -= 7){
j = py[2];
while (brpixel(px[2J,j+2) < brpixel(px[2J,j)) j = j + 2;
while (brpixel(px[2J,j-2) < brpixel(px[2],j)) j =j - 2;
py[21 j; /* the correct vertical center of the eyes *
center py[21;
sx =(px[l]+(px[3]-size/2))/2; /* reset edges of face. *
fx (px[51+(px[3J+size/2))/2;
sy =center - 9*size/10;
fy =center + 9*size/1O;
radius = size;
circle(px[31 ,center+256,radius,1,2,255);
for (j=pxllJ; j~px[51; j++) bwpixel(j,py[l],O);
for (j=py[3J; j<py(71; j++) bwpixel(px[3],j,0);
for (j=l; j<8; j++) bwpixel(pxljl,pyljl,250);
rectangle(sx,sy+256,fx-sx,fy-sy,255);
fill(sx.1,sy+257,255,255);
fill(fx-l,sy+257,255,255);
fill(sx+l,fy+255,255,255);
fill(fx-1, fy+255,255,255);
return(l);

if (test != 7) (/* point 7 was never found. *
test = 0;
x = px[21;
direc =1;

break;

return(0);

B-11

rV W W VrW VVU VW Ir WWU bJ V W VUU M9W UX. 'WP I P V2P'-WJUU' TW W w~k WPU-L W7~q W5 Y r TV I~ W. W- J r W. T- R I 'rW , T 1M

* Name FACE - AUTONOMOUS FACE RECOGNITION MACHINE*

* Author: Laurence C. Lambert - 1987*
* Based on the Data General (Eclipse/Nova) AFRM by E. Smith*

#include "sys$library:stdio.h"
#include "duaO:(itilOO.itexjstdtyp.h"
*include "duaO:Iiti1OO-itexlitexlOO.h"
#include <math>
static int option, test,sy~sx,fy,fx,nf,x,y,z;
int i,k; 1* i = size of tlist, k = size of ilist *
struct list(

char name[1OJ;
int nun;
mnt winlx,winly,win2x,win2y,win3x,win3y;
mnt win4x,win4y,win5x,win5y,win6x,win6y;

static struct list tlist[400J = {O,O,O,O,O,O,OO,O,O,O,O,O,O);
static struct list ilistilO0l = (0,0,0,0,0,0,0,0,0,0,0,0,0,0);
static double gauss[257I;

main() /* 23 *

unsigned base = 0x1600;
long mem = Ox200000L;
int flag = l,block = 8;

sethdw(base,mem, flag, block);
initializeo;
sclear(100,1);
cisO);
printf("\n Initializing hardware and reading dbase files.");
printf("\n Please turn on the video monitor and the camera.");
text(120,200,O,8,O,"AFRM");
text(llO,415,O,1,O," AIR FORCE INSTITUTE OF TECHNOLOGY");
text(10,430,O,1,O," SIGNAL PROCESSING LABORATORY");
text(10,445,O,l,O,"AUTONOMOUS FACE RECOGNITION MACHINE");
text(llO,460,0,1,O," 1987");
del();
i = readfile("I face.dbaseltrain.dat;l", tlist);
k = readfile("L face.dbaselothers.dat; 1", ilist);
rtransao; /* setup gaussian xform for later use in gestalt()o
nf = sx = sy = 0;
fx = fy = 511;
menul();

B-12

. -

menul()

char t2130],t3[301,tempjlOI,chI2I; /* j,1 and m ar-~ counters ~
int verj51,j,l,m; /* veril-41 file version numbers to train on.*/

* mnt r;
int rot[5j f -20,-10,0,10,20);

for(;;)
CIS();
printf("\n AUTONOMOUS FACE RECOGNITION MACHINE\n)

print f("\n ***** MAIN MENU *****\n)

printf("\n l:ACQUIRE IMAGES");
printf("\n 2:FIND FACES");
printf("\n 3:GESTALT AND IDENTIFY / SAVE\n");
printf("\n 4:DISPLAY CONTENTS OF DATABASE");
printf("\n 5:DELETE A SUBJECT");
printf("\n 6:DELETE AN IMAGE");
printf("\n 7:TRAIN\n");
printf("\n 8:DEMONSTRATION\n");
printf("\n O:QUIT\n\n\n\n\n\n>");
scanf("Zd",&option);

* CIS();
swi tch(opt ion)f
case 0:
printf("\n\n saving DBASE files...");
writefile("I[face.dbaseltrain.dat;l",tlist,i);
writefile("[face.dbaselothers.dat;l",ilist,k);
CISO;
printf(" Please turn off the video monitor and the camera.");

00 printf("\n\n\ri\n\n\n\n\n\n\n\n\n");
return;
case 1:

* menu20;
break;

case 2:
printf("\n Sharpen image? (YIN) >");
scanf("'Zs",ch),
if (ch[01 == Hy 1 chtOJ == 'Y'){
sharpen(sx,sy, fx-sx, fy-sy, 3);

facemapo;
break;

case 3:
facerec(1);
break;

case 4:
display(tlist,i ,8);
display(ilist ,k,5);
prtco;
break;

B-13

% %'*-- ~ r .- . -

case 5:
PIP. display(tlist,i,8);

printf("\n\n ***DELETE SUBJECT ***)
printf("\n\n Are you sure (Y/N)? >"1);
scanf("%s", temp);
if (temp[O] != 'Y' && templO] != 'y') break;
printf("\n\n Do you wish to save")
printf("subject's training pictures as .IMG files (Y/N)? >"1);
test = 0;
scanf("%s", temp);
if (templOl == 'Y' 11I templOl == 'y') test = 2;
printf('"\n\n Enter subject's name. >"1);
scanf("%s",temp);

for (j=1; j<(i+1); j=j+4)
if ((strcmp(tlistljj-name,temp)) == 0)(
if (test ==2) (
1 = 0; /* look for highest existing version of I1MG file. *
for (m=l; m<(k+1); m++)
if (strcmp(ilist~mJ.name,temp)==O && ilistlnl.num>>l) l=ilistiml.num;
1 = 1 + 1; /* add 1 to highest version to get new version. *
for (m=l; m<5; m++) [/* put 4 new versions into ilist. *
k = k + 1;
ilistjk).name[0j = \;
strcat(ilistlkl .name,temp);
ilistlk].num = 1;
ilist[kj.winlx = tlist[j+(m-1)].winlx;
ilist[k].winly = tlist[j+(m-l)].winly;
ilistij.win2x = tlistlj+(m-l)].win2x;
ilist[k].win2y = tlistlj+(m-l)J.win2y;
ilist[kJ.win3x = tlistlj+(m-1)I.win3x;
ilistjkj.win3y = tlistlj+(m-1)J.win3y;
ilist[kJ.win4x = tlisttj+(m-1)].win4x;
ilist[kj.win4y = tlistlj+(m-l)J.win4y;
ilistlkl.win5x = tlist[j+(m-1)].win5x;
ilist~k].win~y = tlistij+(m-1)].win5y;
ilist[kJ.win6x = tlisttj+(m-l)J.win6x;
ilistl.win6y = tlistlj+(m-l)].win6y;

U1 = 1- 4;
for (m=0; m<4; m++) II/* now create I1MG and -PIC file names, *
t2[01 = \;
010]j = \;

* strcat(t2,"[face-dbase1\O");
strcat(t2,tlistlj I.name);
strcat(t3,t2);
strcat(t2, ". pic ;\O");
strcat(t3,".img;\O");
chill = \;
chjOJ = tlistjj+mJ.num + '0'; /* convert mnt to char *
strcat(t2,ch);
ch(OJ = 1 + '0';
strcat(t3,ch);
copyfile(t2,t3); /* copy -PIC > I1MG *

"p. B-14

for (m=j; m<(i-3); m++) tlistlml = tlisttm+41; /*del from tlist*/
printf("\n");
i = i - 4;
for (m=l; m<5; m++) [1* delete -PIC files. *

t210J = \;
strcat(t2,"IJface.dbase]\O");
strcat(t2, temp);
strcat(t2, ".pic;\O");
010]J = mn + '0';
t0111 = \;
strcat(t2, t3);
printf("%s%s","\n Deleting ",tQ);

0 delete(t2);

j = i + 2; 1* forces end of loop through tlist *

test = 1; /* indicates that subject was found *

if (test != 1) printf("\n\n Subject not found.");
else printf("\n\n Subject deleted.");
prtcO);
break;

case 6:
display(ilist,k,5);
printf("\n\i*** DELETE IMAGE ***)

printf("\n\n Are you sure (YIN)? >)

scanf("%s", temp);
if (templOl != 'Y' && templOl != 'y') break;

printf("\n\n Enter subject's name. >)
scanf("%s", temp);
printf("\n\n Enter version number. >)

scanf("%s",ch);
print f ("\n");
test = 0;
for (j=1; j<(k+l); j++)

* if (strcmp(ilistij].name,temp) == 0){
if (ilistjj.num == (chiOl - '0'))
t210J = \;
strcat(t2,"Iface.dbasel\0");
strcat(t2,ilist~j I.naine);
strcat(t2, ". img;\0");
strcat(t2,ch);
printf("1%s%s","\n Deleting ",t2);
delete(t2);
for (m=j; m<k; m++) ilistim) ilistlm+1I;
k =k - 1;
j j k +2;
test =1

if (test 1=1) printf("\n\n Image file not found.");
else printf("\n\n Image file deleted.");
prtco;
break;

B-15

%

Tw r ' , P 7' '% VIIS M'W.. M 127 I ---N W -Rj W.-P -L IVLx

case 7:
display(tlist, i,8);
display(ilist,k,5);
print f ("\n\n ***TRAIN ~**)
printf("\n\n Enter person's name. >"1);
scanf("%s', temp);
test = 0;
for (1=1; l<(i+l); 1=1+4) /* test name *
if ((strcmp(tlist[1j-name,temp)) == 0) test =1

if (test == 1) II
printf("\n That name already exists in the training file.");
prtco;
break;

for (1=1; 1<(k+l); 1++)
if ((strcmp(ilistjl.name,temp)) == 0) test = 2;
if (test != 2) (

* printf("\n There are no image files with that name.");
* prtco;

break;

primtf("\n\n You must enter 4 valid (arid unique)");
primtf(" file version numbers.");
printf("\n (Enter -1 to quit training procedure)");
for (j=l; j<5; j++) [
printf("\n Enter version number for training file #)

printf("'%d%s" ,j ,">
scanf("%s",ch);
ver~jj = chiOl '0';
if (ver~j] > 0){
test = 0;
for (1=1; 1<j; 1++.)
if (veril] == verlil)
display(ilist,k,5);
printf("\n\n You already selected:");
for (m=l; m<j; m++) printf("%s%d"," ",verimJ);
j = j - 1;
test =1

if (test !=1)

for (1=1; 1<(k+1); 1++)
if (strcmp(ilistlJ.name,temp) =~0 && ilist[l].num =~ver[jJ)

test = 1;
1 =k + 2;

B-16

if (test 0) 0)
display(ilist,k,5);
printf("1%s~d"1,"\n\n File version #",verljl);
printf("1 not found, try another.");
if (j != 1) {
printf(" (You already selected:");
for (1=1; l<j; 1++) printf("%s%d"," ",ver ill);
printf(")");

else j=5;

if (j ==6) break;
for (j=l; j<5; j++)

1 = i + 1;
for (1=1; l<(k+l); 1++)
if (strcmp(ilist~l].nane,temp) ==0 && ilistllJ.num ==ver[jJ)(

tlistlil = ilistill; /*find proper gestalt file in ilist,*/
tlistlil.num j /*put in tlist, *

*for (m=l; m<k; m++) ilistim] = ilistlm+l];
k = k - 1; /*delete from ilist, *

t210) = '\01; /*create .PIC and I1MG file names, *
t3[01 = \;
s trcat (t2, "if ace. dbase J\0")
strcat(t2, temp);
strcat(t3, t2);
strcat(t2,".pic;\0");

0 strcat(t3," .img;\0");
chill = \;
ch[0l = verlil + '0';
strcat(t3,ch);
chiOi = j + '0';

* strcat(t2,ch);
pr in tf("W'") ;
copyfile(t3,t2); /* copy I1MG > .PIC *
printf("%s%s","\n Deleting ",t0);
delete(t3); /*and finally, delete the .1MG files *

printt("%.s%s%s","\n\n The training file now contains (",temp,">.");
prtc();
break;

0 case 8:
menu30;
break;

default:
break;

B-17

II
int cam;
char namel5O],t11501,tempt2J;

4. ~for (;
CISO;
printf("\n ***ACQUISITION OF IMAGES *****\n");
printf("\n O:RETURN TO MAIN MENU\n");
printf("\n l:STATIONARY TARGET");
printf("\n 2:MOVING TARGET");
printf("\n 3:LOAD IMAGE FROM MEMORY\n");
printf("\n 4:SAVE IMAGE IN LFACEJ\n");
printf("\n 5:SET CAMERA PORT");
printf("\n 6:CAMERA CHECK");
printf("\n 7:RE-INITIALIZE HARDWARE\n\n\n\n\n\n>");
scanf("%d",&option);
CIS();
switch (option)
case 0:
return;

case 1:
nf = sx = sy = 0;
fx = fy = 511;
getcharo;
printf("\n ***STATIONARY TARGET ***)

printf("\n\n Acquire new image (YIN)? >");
1% scanf("%s", temp);

if (temp[Ol == 'Y' Itemp[O] == y'){
grab(O);
prtc();
stopgrab(1);

break;
case 2:
nf = 0; /* this algorithm sets sx,sy,fx,fy to target's location *
printf("\n MOVING TARGET *****\n\n");
getcharo;
printf("\n Prepare background image and press RETURN to continue. >");
waitvbo; 1* The aclear() is used in this routine to *
grab(O); /* clear the 1st 16 columns of the image *
getcharo; /* because of an X SPIN delay of the image.*/
stopgrab(l); /* Therefore the 256x512 image is really *

setreg(XSPIN,O); /* only a 256x496 image. *
snap(1);
aclear(O,O, 16,768,0);
set reg(SCROLL, 256);
printf("\n\n Prepare subject image and press RETURN to continue. >");
waitvbo; /* Scrolling 256 stores the background image *
grab(O); /* off the screen area. Scroll 0 brings it *
getcharo; /* back. I have used the setreg function instead *
stopgrab(l); /* of scroll because of the problem with defini- *
setreg(XSPIN,O); /* tions in the library. (see the comment *
snap(l); /* obtained when linking this program). *

B-18

.e 'd,

aclear(O, 0, 16, 512, 0);
setreg(SCROLL,O);
printf("\n\n Subtracting images and locating target.");
oparea(O,256,512,255,O,O,512,255,5,l);A
if (isolate(20,8,16) == 0) [/* Isolate target from surroundings *
printf("\n Could not find target. Press RETURN to continue. >");
getcharo;
sx =sy =0;
fx = fy = 511;
break;

carea(sx+l ,sy+257, fx-sx-1, fy-sy-l ,sx+ , sy+l, fx-sx-l ,fy-sy-l);
aclear(O,255,512,256,0);
break;

case 3:
printf("\n ***LOAD IMAGE FROM MEMORY ***)
printf("\n\n\n Enter complete file specification.");
printf("\n (Idirectory.subdirectoryjfilename.ext;version)\n\n >)
scanf("Zs", name);
printf("\n\n\n Loading file...)
if (readim(0,0,511,480,name,"nocomm") ==-1)(

printf("\n\n\n File not found.");
prtc();

nf = sx = sy = 0;
fx = fy = 511;
break;

case 4:
tltOI = \,
strcat(tl,"[facej\0");
printf("\n Will save ******ENTIRE****** screen as 8-bit image in)
printf("directory IFACEI.\n\n\n Enter name (including EXT)I\n\n >)

scanf("%s", name); /* I want to make sure that the DBASE *
strcat(tl, name); /* directory is not touched by this save.*/
printf("'\n\n\n\n Saving image..."'); /* Hence the directory name is*/
saveim(O,0,511,480,0,tl,"nocomm"); /* not allowed to vary. *
break;
case 5:
printf("\n Select camera port (0,1 or 2) >)

scanf("%d" ,&cam);
setcamera(cam);
break;
case 6:
printf("\n\n ***CAMERA CHECK *****\n\n");
grab(O);
prtco;
stopgrab(l);
nf = sx = sy = 0;
fx = fy = 511;
break;

B-19

.Jp '.rr , %V , " - E J-W v I-awV 1-V

case 7:
initializeo;

~.nf =sx =sy 0;
fx = fy = 511; /****************.********

sclear(100); /* using 100 gives a clean screen that is not too *
break; /* dark to tell whether the monitor is on/off *

default: /* This is to prevent accidently leaving it on. *
break;

menu3() 1* 402 *

char temp[lOj,chI2I,t31301;
mnt versionj;

for (;;)[
clsO);
printf("\n ***DEMONSTRATION *****\n");
printfQ'\n O:RETURN TO MAIN MENU\n");
printf("\n 1:IDENTIFY A PERSON");
printf("\n 2:TOTAL SYSTEM\n\n\n\n\n\n\n>");
scanf("%d"',&option);
switch (option)

-~ case 0:
return;

case 1:
display(ilist,k,5);
printf("\n\n ***IDENTIFY A PERSON ***)

6 printf("\n\n Enter person's name. >");
scanf ("Us", temp);

* printf("\n\n Enter version number. >");
scanfC'1%s" ,ch);
printf("\n");
test -;
for (j=l; j<(k+l); j++)
if (strcmp(ilist[jJ-name,temp) == 0){
if (ilistljj].num ==(chjOJ - '0'))
t3[01 = \ ;
s trcat (t3, "If ace. dbase] \O")
strcat(t3, ilistli I.name);
strcat(t3, ". img;\O"')
strcat(t3, ch);
test =j
j =k + 2;

if (test ==-1) printf("\n\n Image file not found.");
else

anf =sx =sy = 0;
fx = fy =511;

sclear(O, 1);
readim(200, 30,200, 200, t3, "nocomm");
text(200,1O,O,1,200, temp);
recognize(test);

break;

B- 20

N % V

case 2:
* af rmO

break;
default:
break;

I

printf("\n\n Press RETURN to continue. >)
getchar();
getcharo;
return;

cls()
I
printf("\n");
return;

static int pix,avg,diff,neigh,threshold,ne,nn,nm;
static int col[512J;
struct image[

mnt data[512J;

struct feat[
int sx,sy, fx, fy,xcenter,ycenter,pix,xsize,ysize,used;

struct whole[
mnt x,y,dx,dy,leye,reye, teye,beye, tnose,cmouth;
mnt center,xellipse,yellipse,radius;

static struct image pic[512J,norm[5l2I,temp[512J;
static struct feat eye[lOOI,nose[1OOJ,mouth[1OOJ;
static struct whole faceji~l;

B-21

int facemap()

4 int i,j,k,l;
char nameI3OI;

del();

* printf("\n processing image...");
* bright _normo;
* ne = nnl = nm = nf = 0;

featuremapo;
for 0i=1; i<ne; i++)
if (eve(ij.used == 0){
for (j=1; j<ne.1; j--) f 1* look for a matching eye *
if (eyeljJ.sx > eyelij.fx && eyel.used ==0) (/* try eye[jJ *

if (abs(eyeljj.pix - eyejiJ.pix) < eyejjj.pix/2) [1* pix nuns okay *
if (eyelj].ycenter > eyelij.sy &&

eyeljJ.ycenter < eyelij.fy) [/* close in height *
if (eye[jj.sx < eyejij.fx+2*eyejiJ.xsize) (* near enough *
for (k=l; k~nn+l; k++) [/* look for a nose *

* if (noselkj.sy > eyelij.fy && noselkl.used ==0) (1* try noselkJ *
if (noselkJ.xcenter > eyelJ.sx &&

nosejkj.xcenter < eyeljj.fx) f * between eyes *
for (1=1; l<nm+1; 1++-) [1* look for a mouth *
if (mouthl.ycenter > noselki.fy &

* mouthlil.used == 0) (* below nose ~
if (mouthtl].ycenter < eyejil.fy+4*eyelij.ysize) [/* near*/
if (mouthllJ.xcenter > eyetij.sx && /* enough *

mouth[l].xcenter < eyel.fx) (/* between eyes *
tonf = nf+l; /* all features found and cond met for a face. *

eye~iJ.used = eyeljj.used = 1;
noserk]-used = mouthIl.used = 1;
facelnfJ.dx = 9*(eye~jJ.xcenter - eyelij.xcenter)/4;
facelnf].dy = 2*(mouthlll.ycenter - eyeliJ.sy);
face[nfj.x = (eyel.xcenter+eyelij.xcenter)/2 -

facelnf I.dx/2;
face~nfj.y = mouth[Ij.ycenter - 4*facelnfl.dy/5;
facejnfJ.leye = eyeliJ.sx - facelnfl.x;
faceinfj.reye =eyeljl.fx - facelnfl.x;
facejnfJ.teye = (eyeliJ.sy + eyeljj.sy)/2 - faceinfJ.y;
facelnf].beye =(eyelil.fy + eyejl.fy)/2 - faceinfj.y;
facelnfl.tnose = noselki.sy - facelnfl.y;
faceinfl.cmouth =mouthlll.ycenter -facelnfl.y;

facelnfj.centet face(nfj.dx/2;
faceinfj.xellipse = facelnfl~dx/2 .faceinfi.x;

facelnfl.yellipse = facelnfl~dv'2 .facelnfl.y;

facelnfJ.raditis =facejnfJ.dx;
c ircle(facelInfl xefllipse.facel nf)yellipse,

f acelnfI. rad its.1,2,255);
rectangle(eyeliJ.sx,eyelil.szy,eyeljl.fx - eyelij.sx,

mouthil 1.ycenter -eyelf.sy,255);

1 k,- 500;

B-22

if Onf == 0) return(0);
printfQ'\n Saving brightness normalized faces to disk..."1);
for (y-0; y<480; y++) whline(O,y,512,normtyJ.data);
namelOl = \;
strcat(name, "bnorm. img\0"');
for (i=1; i<nf+i; i++) (
printf("\n Zs%s~d" ,name, " ;", i);
circle(facetil.xellipse,facelii.yellipse,faceti].radius,i,2,255);
rectangle(facet i].x, facet il .y, facet ii.dx, facet iJ.dy,255);
fill(facetil.x+1,facetil.y+1,255,255);
f ill(facejil .x+facelJ. dx-1, facejil .y+facelil .dy-i, 255, 255);
f ill(facelil.X41, facelil.y+face i]. dy-i, 255, 255);
fill(facetiJ.x+facelil.dx-i,facelij.y+1,255,255);
saveim(face Iii .x, facet ii . yfacet ii .dx, facet i . dy, 0, name, "nocomm");

printf("\n Also saving original faces...");
for (y=O; y<480; y++) whline(0,y,512,temptyJ.data);
name(Oj = \;
strcat(name, "orig.img\O");
for (i=i; i<nf+i; i++){
printf("\n Zs%s%d",name, " ;", i);
rectangle(face~il.x, facet ij.y, facelil .dx, facetij.dy, 255);
saveim(facet i . x, facet i . y,facetii . dx, facet i . dy ,0, name, "nocomm");

return(i);

B-23

featuremap()

'int fill,test,ymin,ymax,xmax,i,j,dy,dx,ytest,xtest,by.
char type;
for (y=sy+14; y<fy-14; y++) { /* begin and end with 14 pixel margins */
test = 0;
for (x=sx; x<fx-14; x++) { /* see if line is touching top of object */
if (pic[y+l].datalxj == 0) { /* these checks are done like this */
if (pic[yJ.datalxj == 100) { /* for speed. */
if (piclyl.datalx-lI+piclyl.datalx+lJ == 200)
if (pictyl.datalx-21+picly].data[x+2] == 200)
if (pic[yl.datalx-31+pic[yI.datalx+31 200) {
if (picly].data[x-41+piclyl.datalx+41 == 200)
if (pic[yj.datalx-5]+piclyj.datajx+5J == 200)
test = 1;
bx = x - 50;
if (bx < 14) bx = 14;
x =512;

}))}})))
if (test == 1) { /* okay, for this line find the object(s) */
for (x=bx; x<498; x++) {
test = 0;
type = 'u';
if (piclyl.data[xj == 100) { /* possible corner */
ymax = y + 40;
if (ymax>479) ymax = 479;
for (i=y; i<ymax+l; i++) { /* how far is line white? */
if (pic[i].datalxl == 0) {
ymax = i - 1;
i = 512;

}}
if (ymax > y+l) {
for (i=y+l; i<ymax; i++)
if (picli].datatx+l] == 0) { /* something touching line */
dy = i;
test = 1;
i = 512;.}}}}

if (test == 1) { /* left side ok */
xmax = x + 50;
if (xmax>498) xmax = 498;
for (i=x; i<xmax+l; i++) { /* how far is line white? */
if (piclyl.datalil == 0)
xmax i-l;
i = 512;

test = 0;
if (xmax > x+1) {
for (i=x+l; i<xmax; i++) (
if (pic[y+lJ.data[iJ == 0) { /* something touching line *1
dx = i;
test = 1;
1 = 512;

B-24

-' F r, . . '.

4

if (test == 1) { /* at the border of unknown object */
test = 0;
while (dx < xmax+l && dy < ymax+l && test == 0)
ytest = 0;
while (dy < ymax+l && ytest == 0) { /* try to go across to dx */
ytest = 1; /* assume success */
for (i=x; i<dx+l; i++)
if (picidyl.datalil == 0) ytest = 0;

if (ytest ==0) dy = dy + 1;
I
if (ytest == 1)
xtest = 0;
while (dx<xmax+l && xtest == 0) { /* try to go down to dy */
xtest = 1; /* assume success */
for (i=y; i<dy+l; i++)
if (pic[il.data[dx] == 0) xtest = 0; /* failed */

if (xtest == 0) dx = dx + 1;

if (xtest == 1) [/* recheck present dy */
for (i=x; i<dx+l; i++)
if (picldyl.data[il == 0) ytest = 0; /* failed */

if (xtest == 1 && ytest == 1) test = 1;
1)1)
if (test == 1) / /* successfully blocked in object */
if ((dy-y) > 3*(dx-x)) type = 't'; /* too tall and thin */
if ((dx-x) < 7) type = 't'; /* too small */

I
if (test == 1 && type == 'u')
fill = 0;

to for (j=y+l; j<dy; j++)
for (i=x+l; i<dx; i++) if (picljl.data[iJ == 0) fill++;
if (fill < (dx-x)*(dy-y)*3/1O) test = 0; /* less than 30% solid */

if (test == 1 && type == 'u')
if (dx-x > 2*(dy-y)) { /* possible mouth */
rectangle(x,y,dx-x,dy-y,O);
type = 'm';
nm= nm + 1;
mouth[nm].xcenter = (dx+x)/2;
mouth[nmj.ycenter = (dy+y)/2;
mouth[nmJ.sy = y;
mouthtnmJ.used = 0;

B-25

9. , ", -"-"-%.,"" . -... " .'',-''' ''',,-;; -'' ; , ,- , " ", " ,"- .'

if (test == 1 && type !='t'){

fill =0;
ymax =dy+(2*(dy-y)/3);
if (ymax < 480) (
for (j=dy+l; j<ymax; j++) /* chk for space below *

for (i=x; i<dx; i++.) if (picl.dataliJ == 0) fill+-+;
if (fil1<(ymax-dy+1)*(dx-x)*10/i00) { * less than 10% of area filled *

type = l'
ne =ne +1;
eyejneJ.xcenter = (dx+x)/2;
eyelneJ.ycenter = (dy+y)/2;
eyelnel.pix = (dx-x) * (dy-y);
eye[nej.xsize = dx - x
eye[neJ-ysize = dy - y
eyelne].sx = x
eyelnel.fx = dx;
eyelnej.sy = y
eye[ne].fy = dy;
eyelneJ-used = 0;
rectangle(x,y,dx-x,dy-y,0); /* (lxI <= size <= 20x20) *

fill=O0;
ymin = y-(dy-y);
if (yniin > 0) [
for (j=ymin; j~y; j++) /* chk for space above *
for (i=x; i<dx; i++i) if (picljj.datali] == 0) fill++.;
if (fill < (y-ymin)*(dx-x)*10/100) (* less than 10% of area filled *
nn =nn+l1;
noselnnJ.xcenter =(dx+x)/2;

0 nose[nni.ysize = dy - y
nosejnnj.fy = dy;
nose~nnJ-sy = y
nose[nnJ.pix = (dx-x) * (dy-y);
nose[nn].used = 0;
rectangle(x,y,dx-x,dy-y,0); /* (lxi <= size <= 20x20) *

return;

B-26

p bright-norm() /* norm will contain brightness normalized scene *
I /* (bright areas set to 128, dark areas= 128-diff*/
mnt i,j; /* pic will contain the dark objectr- of the scene ~

/* (uses variable threshold, binary output) *
sx = sx - 14;
if (sx < 0) sx = 0;
sy = sy - 14;
if (sy < 0) sy = 0;
fx = fx + 14;
if (fx > 512) fx = 512;
fy = fy + 14;
if (fy > 480) fy = 480;
for (y=O; y<4 80; y++) for (x=0; x<512; x++) normlyJ.data[xi 0;
for (y=O; y<48 0; y++) rhline(0,y,512,pic[yJ.data);

p.y = sy;
for (i=sx; i<fx; i++){
colli] = 0; /* setup all columns for first y value *
for (j=y; j<y+30; j++) collij += pic[jJ.data[iJ;

for (y=sy+l; y~fy-30; y++.) { * now all columns calculated faster *
* for (i=sx; i<fx; i++) collil += (picly+29J.datalJ - picly-1j.dataliJ);

x = sx;
neigh = 0; /* setup first neighborhood *
for (i=x; i<x+30; i++) neigh += collil;
for (x=sx+1; x<fx-30; x++) {/* now all other neigh are calculated faster *
neigh += (collx+29J - col~x-11);
avg = neigh/900;
pix = picly+141.datalx+141;

if (pix < avg) norm~y+141.datatx+141 = 128 - (avg - pix);
else normly+141.datalx+141 = 128;
if (normly+141.datalx+141 < 0) normjy+14J.datalx+14] = 0;

threshold = 80*avg/l00 + 7; /* add 7 because noise is +/- 7 *
if (pix < threshold) temply+141.datalx+14J = 0; /* dark=0 *
else tempiy+141.datalx+14J 100; 1* else light=100 *

for (y=sy+l4; y<fy-14; y++) { * cleanup noise *
for (x=sx+14; x<fx-14; x++){
piclyl.datalxJ = templyJ-datalxl;
if (temp[yJ.datajxj = 0)(
if (templ.dataix-lI+templyl.datalx+1]+templyJ.data[x+21 > 0){
piclyJ.datalxl = 100;

foi ysn);yf-1;y+
for (y=s+14; y<fy-14; ++)

if (piclyl.datajxl == 0)[
if (piclyi.datalx-lj+picly--lj.datalxI+picly+lJ .datalxJ+

piclyl.datalx+1j > 200)
piclyj.datalxl 100;

B-27

for (x=fx-14; X>SX+14; X--){

if (picfyl-data[xj = 0)(
A' if (pic~yJ-datalx-lJ+picly-1J .datalxl+picty+lJ .datalxJ+

pic[yI.datalx+lJ > 200)
H piclyl.dataixj = 100;

for (y=O; y<480; y++) rhline(0,y,512,temp[yJ.data);

Ireturn;

FILE *fp; /* values that are stored in the DAT files. They *

{ 1* are stored in columns of 5 characters. (see *

int i,number; /* sample printout of .DAT file).*
char c;

number =0;
for (i=0; i<5; i++)(
c = getc(fp);
if (c -'')number (number *10) +(c 1 0');

return(number);

copyfile(src,dest)
char srcll,destlJ; /* copies Itex image files. *

char t9[1001;

t9101 = \1
strcat(t9,"copy \0");
strcat(t9,src);
strcat(t9," \0");
strcat(t9,dest);
printf('\n %s",t9);
system(t9);
return;

B-2

.

int readfile(name,str) /* used to read in the DAT files upon main menu *

char name[J; 1* selection = 2 (care & feeding of database). *

struct list stri J; /***************r********/

FILE *fp,*fopenQ;
int i,j,c;

fp =fopem(name,"r");
i =0;
while ((c =getc(fp)) !'* 1 /* the star denotes the EOF *

1 = 1 + 1
strlil.name[l = c;
for (j=1; j<1O; j++)(
c = getc(fp);
if (c !'')strjij.name[jJ =c;

str[i].namejslJ = \;
str[i].num = getint(fp);
str[i].winlx = getint(fp);
strli].winly = getint(fp);
str[i].win2x = getint(fp);
strtii.win2y = getint(fp);
str[i].win3x = getint(fp);
strl.win3y = getint(fp);
str[iJ.win4x = getint(fp);
srr[i].win4y = getint(fp);
strlil.win5x = getint(fp);
strliJ.win5y = getint(fp);
strljij.win6x = getint(fp);
strli].win6y = getint(fp);
c = getc(fp); 1* read newline character *

fclose(fp);
return(i);

/* 814 *

writefile(name,str,i) /* used to write updated DAT files to disk when *

char name[]; /* user is done modifying the database and selects *

struct list str[J; 1* menu option = 0 (Return to main menu). *

mnt i;

FILE *fp,*topenQ;
mnt j;

delete(name);
fp = fopen(name,"w");
for (j=1; j<(i+1); j++)
fprintf'fp, "%-l0s%5d", strljl-name, strljJ.num);
fprintf(fp, "%Sd%Sd", str[j J.winlx, strljJ.winly);
fprintf(fp, "%Sd%Sd", strljJ.win2x, str[jJ.win2y);
fprintf(fp, "%5d%Sd", strlj J.win3x, strljJ.win3y);

B-29

I

fprintf(fp, "%5d%5d", str[j].win4x, str[jJ.win4y);
fprintf(fp, Z5d%5d", str[j.winx, strjl.winy \. . fprintf(fp, "Z5d%5d%s", str[j].win6x, strtjj.win6y, "\n");

fprintf(fp, "*");
fclose(fp);
return;)

display(str,k,m) l* m = 5 or 8 depending on # columns desired *I
struct list strt]; /* m = 5 for jlist displays, 8 for tlist displays *1
int k,m; /* 1 = present column being printed on screen **

{ /* j counts by 1 or 4 depending on value of m
int j,l; l* this is due to format of tlist file; there are */
l = 0; 1* sets of 4 lines all with the same name and the *I
if (m == 5) { /* name only needs to be printed once. */
printf("\n\n The AFRM has the following .IMG files:\n");
printf(" ------------------------------------ ;}

else {
printf(" The AFRM is trained on the following subjects:\n");
printf(" ---

I
for (j=l; j<(k+l); j=j+(m-4)) {
1 = 1 + 1;
if (1 == m) {

printf("\n");
I

a if (m == 5) printf("Zlls%sd",strlj].name, ".img;", strij].num);
else printf("%lls",strjJ.name);

}
return;I

static double crayl129][1291,rinpl1291;
static double jr3d3,ir3d3; ** scaled gestalt values returned from cortranl6 */
static int ix,iy; /* window sizes used by cortranl6 *1

B-30

gestalt(m) /* Values range from 0 to 128 *
int m; /* m = face number *

int x,y;
line(256,O,256,512 ,O);
line(0,256,512,256,0);
line(384 ,0, 384 ,512, 0);

k1 line(128,256,l28,512,0);
/* left half: whole head *
carea(sx,sy,facelmJ.dx/2,facelml.dy,270,sy,facel.dx/2,facetmJ.dy);
/* right half: whole head */
carea(sx+facelml.dx/2,sy,facel.dx/2,facelmJ.dy,

400,sy,facejmj .dx/2,facelmJ .dy);
1* top half: top to tnose */
carea(sx,sy,facejmj.dx,facelmlj.tnose,15,sy+256,facefm].dx,facejmj.tnose);
/* internal features */
carea(sx+facelmJ.leye,sy+faceimJ.teye,facelm..reye-facelml.leye,

faceim].cmouth-facelm]-teye,
140+facelml.leye,sy+256+facelml.teye,facelmJ.reye-facelmj.leye,

facelml.cmouth-faceimi.teye);
1* left internal features */
carea(sx+facelm].leye,sy+facelmj.teye,facelml.center-facelmJ-leye,

faceim] .cmouth-facelmJ teye,
270+faceimJ.leye,sy+256+face[mJ-teye,facelmJ.center-face[mJ.leye,

faceimj.cmouth-faceimJ teye);
/* bottom half: tnose to chin */
carea(sx,sy+facejmj.tnose,facejmj.dx,facejmJ.dy-facejmj.tnose,

400,sy+256+facelml tnose, facetmi .dx, facelmi .dy-facelmj tnose);
line(sx,sy,sx+facetmj .dx,sy,0); /*top*/
line(sx+facetmJ .dx,sy,sx+facelml .dx,sy+facelmJ .dy,0); /*right*/
line(sx+facelmJ.dx,sy+facelmj .dy,sx,sy+facelj.dy,0); /*bottom*/
line(sx,sy+face[mJ .dy,sx,sy,0); /*left*/
line(sx,sy+facetmj.teye,sx+faceimJ.dx,sy~facelm].teye,0); /*teye*/
line(sx,sy+facetml .cmouth,sx+facelmj .dx,sy+facelml .cmouth,0); /*cmouth*/
line(sx,sy+facefmJ.tnose,sx+facelmJ.dx,sy+facelmJ.tnose,0); /*tnose*/
line(sx+facelmi leye,sy,sx+facelmj leye,sy+facelmj .dy,0); /*leye*/
line(sx+facelml.center,sy,sx+facetmJ.center,syfacelml.dy,0); /*center*/
line(sx+facelml reye,sy,sx+facelml reye,sy+facelml .dy,O); /*reye*/
ix = facelmj.dx/2;
iy = facelmJ.dy/2;
printf("\n calculating gestalt for window 1.");
clear crayo; /* left half: whole head *
for (y=sy; y<sy+facejmJ.dy; y+=2)
for (x=270; x<270+facelmJ.dx/2; x+=2)

* crayll+(x-269)/2jj1+(y-29)/2] = (double) 255 - brpixel(x,y);
cortranl6O);

'I ilist[Oj.winlx = (int) jr3d3;
ilist[OJ.winly = (int) ir3d3;

* printf(" winlx=Zd winly=%d", ili t 01 .winlx,ilistjOJ .winly);

B-31

printf("\n calculating gestalt for window 2.");
clear_crayo; /* right half: whole head *

f or (y=sy;
y<sy+facelmj.dy;

y+=2)

crayll+(x-399)/2+facelmJ.dx/4J11+(y-29)/21 (double) 255 -brpixel(x,y);

cortranl6();
ilist(O].win2x = (int) jr3d3;
ilist[OJ.win2y = (int) ir3d3;

Z printf(" win2x=%d win2y=%d",ilistIOJ.win2x,ilistIOI.win2y);
printf("\n calculating gestalt for window 3.");
clear -cray(); /* top half: top to tnose *
for (y=sy+256; y<sy+Z'56+facel.tnose; y+=2)
for (x=15; x<15+face(mJ.dx; x+=2)
crayll+(x-14)/2J[1±(y-285)/2J = (double) 255 - brpixel(x,y);

cortranl6O);
ilisttOI.win3x = (int) jr3d3;
ilist[OJ.win3y = (int) ir3d3;
printf(" win3x=%d win3y=%d",ilist[OJ.win3x,ilist[O].win3y);
printf("\n calculating gestalt for window 4.");
clear crayo; 1* internal features *
for (y=sy+256; y<sy+256+face~mJ.cmouth; y+=2)
for (x=140; x<140+facelmJ.reye; x+=2)
crayll+(x-l39)/2]Ll+(y-285)/2J = (double) 255 -brpixel(x,y);

cortranl6();
ilistIOJ.win4x = (int) jr3d3;
ilistIOI.win4y =(int) ir3d3;
printf(" win4x=%d win4y=%d",ilistjOJ .win4x,ilist[OJ.win4y);
printf("\n calculating gestalt for window 5.");
clear crayo; /* left internal features *
for (y=sy+256; y<sy+256+facejnJ.cmouth; y+=2)
for (x=270; x<270+facelmJ.dx/2; x+4=2)
cray[l+(x-269)/2J1l+(y-285)/2J = (double) 255 - brpixel(x,y);

cortranl6();
ilistIOJ.winsx = (int) jr3d3;
ilist[OJ.win5y = (int) ir3d3;
printf(" win5x=%d win5y=%d",ilist[l.winsx,ilist[O].winsy);
printf("\n calculating gestalt for window 6.");
clear cray(); /* bottom half: tnose to chin *
for (y=sy+256; y<sy+256+faceLml.dy; y+=2)
for (x=400; x<400-.facelml.dx; x+=2)
crayll+(x-399)/2111+(y-285)/2j = (double) 255 - brpixel(x,y);

cortranl6()
ilistIOJ.win6x = (int) jr3d3;
ilistIOJ.win6y = (int) ir3d3;
printf(" win6x=%d win6y=Zd",ilistIOI .win6x,ilistIOi.win6y);
return;

B-.32

% cont enhance(m)
% '0' inmm; 1* face number *

int x,y,z;
% ~static luts();

setlutTRED,5);
histeq(RED,5,facelml.leye+sx+l,facelm].beye+sy,

facelm].dx/2 - 2,facelml.cmouth-facelm].beye);
maplut(RED,5,Q,O,256,256);
linlut(RED,5);p linlut(GREEN,5);
linlut(BLUE,5);
for (y=sy; y<sy+facejmJ.dy; y++) / * threshold result *
for (x=sx; x<sx+facelml.dx; x++)

V z = brpixel(x,y); /* leave dark areas but *
if (z < 50) bwpixel(x,y,z); /* make skin pure white *

return;

scale(m)
mnt m;

int fact;
if ((fx-sx)/150 > (fy-sy)/150) fact 1 50/(fx-sx);
else fact = 1501(fy-sy);
if (fact > 1) [
repzoom(sx,sy,fx-sx,fy-sy,sx,sy,200,200,fact,fact);
facelmJ.dx = facel.dx * fact; 1* update face[mI.lines by 'fact' *
facelm].dy = facelmJ.dy * fact;
facelml.leye = face[mJ.leye * fact;
face[m].reye = face[mJ.reye * fact;
facelmj.teye = facelmJ.teye * fact;
face(m].beye = face[m].beye * fact;
face~m].tnose = facelJ.tnose * fact;
facelm].cmouth = face[mJ.cmouth * fact;
face[m).center = facel.center * fact;
fx = (fx-sx)*fact + sx; /* update fx,fy by 'fact' *
fy = (fy-sy)*fact + sy;

B-33

acl arO ,O51,I;L. W W V , a W - -- . . .-

aclear(O,f,512,sy,255);
aclear(O,fy,512,480-fy,255);

9. aclear(O,sy-l,sx,fy-sy+1,255);
•- aclear(fx,sy-1,512-fx,fy-sy+1,255);

return;I

int isolate(thresh,mode,size) /* works on top half of screen only! */
int thresh; /* threshold for detection of target */
int mode; /* 6 bit or 8 bit image */
int size; /* determines minimum size of target and affects speed. *1

(/* size is either 16 or 32 pixels. */
int x,y,z;

sx = sy = fx = fy = -1; /* Find top. *
for (y=size-l; y <= 255; y=y+size)(/* This subroutine finds location */
for (x = 0; x < 511; x=x+size)(/* of a moving object. If there is*/
z = brpixel(x,y); /* no moving object, or it is too *1
if (mode == 6) z = z & 63; /* small then (0) is returned. If */
if (z >= thresh) (1* an object is found then sx,sy, */
sy = y-(size-l); /* fx,fy are set and (1) is re- */
x = 512; /* turned. This is done so that *.
y = 512; /* all future work done on a scene*/

}}} /* is done on a greatly reduced */
if (sy == -1) return(O); /* area of the scene and hence is *I
for (y=256-size; y>(sy+size-l); y=y-size){/* done faster. Thresh is set to*/
for (x = 0; x <= 511; x=x+size){ /* high enough value to eliminate */
z = brpixel(x,y); /* video noise but low enough to */
if (mode == 6) z = z & 63; /* find small brightness differen-*/
if (z >= thresh){ /* ces that may occur between a */
fy = y + size-i; /* Find bottom. * moving object and its bkgnd. */
x = 512;
y = -1;

if (fy < (sy + size)) return(0); ".
for (x=size-l; x <= 511; x=x+size){ /* find left side *.
for (y = 0; y < 255; y=y+size){
z = brpixel(x,y);
if (mode == 6) z = z & 63;
if (z >= thresh){
sx = x - (size-l);
x = y = 512;

)) I

• .-

B-34

VS

~J
. " -L'

.-
"-L-L'L'- "- """- . '" '.'".'- ."-' ' "'" '- "/"-'".-" " 2z //', ." . " .' " ' .' -' ''

if (sx == -1) return(O);

for (x = 512-size; x > (sx + size-i); x = x - size)(
• e for (y = 0; y < 255; y = y + size)(/* find right side */

z = brpixel(x,y);
if (mode == 6) z = z & 63;
if (z >= thresh){
fx = x + size-i;
x =-I;

y = 512;

if (fx < (sx + size)) return(O);
return(l);

#define AO (short int)aO(i) /* These are the transformations used in the */
#define aO(i) (i & OxOO3f) /* feedback lut for the real time subtraction */
#define Al (short int)al(i) /* demo. This software was created by using */
#define al(i) ((i & OxOfcO) >> 6) /* the toolbox program (see FG-100 user's */
#define DO(i) (data &= OxffcO; data 1= (i & OxOO3f);) /* manual chapt 7) */
#define Dl(i) { data &= OxfO3f; data 1= ((i << 6) & OxOfcO);) *
#define INPUT Ox6000
#define abs(i) (((i) < 0) ? (-(i)) (i))

xforml(addr, initial)
unsigned addr,initial;

register unsigned short i = addr;
register short int data = initial;
DI(A1);
DO(abs(Al - AM;
return((unsigned)data);}

xform2(addr, initial)
unsigned addr,initial;

" {
register unsigned short i = addr;
register short int data = initial;
D1(AO);
DO(abs(Al - AO));
return((unsigned)data);I

B-35

afrm() /* A completely Autonomous Face Recognition Machine (AFRM) *

int cam;
char t2j301,t3t301,stop,answerllj;
register unsigned j;

stop = I'
printfQ'\n Select camera port (0,1 or 2) >"1);
scanf("Zd",&cam);
while (stop == 'n'){
clsO);
printf(" please wait ...")
rtsubtract(O);
setcamera(cam);
set lut(O,0);
set inmux(6);
for (j=O; j<OxlOOO; j++) write-lut(INPUT,j,xform2(j,read-lut(INPUT,j)));
clsO);
printf(" looking for target.");
snap(l);
snap(l);
while((isolate(8,6,32)) != 1) snap(l);
printf(\n found target, acquiring 8 bit image.");
itializeo;
setcamera(cam);
waitvbo;
snap(l);
nf = sx = sy = 0;
fx = 511;
fy = 255; /* presently isolate() only looks for target in top *
if (facenap() == 1) / * half so look for faces in top half *
printf("\n found";
printf("%d",nf);
if (nf == 1) printf(" face.");
else printf(" faces.");
facerec(2);

printf("\n Do you wish to stop? (YIN) >)

scanf("s" ,answer);
if (answerlOJ = Y' 11 answerjl] 'y') stop y

return;

B-36]

NI

rtransa() /* modified from RTRANSA.FR written 06/27/85 by R. RUSSEL *I

int s'j;

double arg;
for (s=l; s<256; s++) {
j = s - 128;
arg = ((double)j*j)/(-6000.0);
gauss[j+1281 = exp(arg);
I
return;

rtransb() 1* modified from RTRANSB.FR written 06/28/85 by R. RUSSEL *I
1* multiplys rinp by gaussian and puts in output */

int i,j;
double output[1291;

for (i=l; i<129; i++) {
outputli] = 0;
for (j=l; j<129; j++) output[i] = outputli] + rinpljJ*gauss[j-i+128J;
I
for (i=l; i<129; i++) rinp[i] = output[i];
return;

clearcray()
[

int x,y;
for (y=l; y<129; y++) for (x=l; x<129; x++) cray[xJ[y] = 0.0;
return;

B-37

L% ' "" ' -' ' ' '' " '"-- .'","" % ' ':"" "'. ' , '"" -'-- '. . . """". '"".

cortranl6() /* Modified from CORTRAN16.FR 11/23/85 by R. RUSSEL */

int j,i,iwinmax;

double c,bmax,ir3d,jr3d;
for (i=1; i<iy+2; i++) (/* see note. Do 2D gestalt, rows first */
for (j=l; j<129; j++) rinp[j] = cray[j][i];
rtransbo;
for (j=l; j<129; j++) cray[j][i] = rinp[j]; /* put result into array */
I
for (j=l; j<ix+2; j++) { /* see note. Now do columns */
for (i=1; i<129; i++) rinp[iJ = cray[j][iJ;
rtransbo;
for (il; i<129; i++) cray[j][i] = rinpliJ;

bmax = 0.0; /* Columns completed. Find location of max value */
ir3d = 64.0; /* define preset values for a zero array */
jr3d = 64.0;
for (i=1; i<iy+2; i++) (
for (j=l; j<ix+2; j++) (
c = cray[j][i];
if (c > bmax) (/* note: only go to ix,iy in array */
bmax = c; /* because beyond that is all zero */
ir3d = (double)i;
jr3d = (double)j;

iwinmax = iy; /* scale */
if (ix > iwinmax) iwinmax = ix;
ir3d3 = ir3d*(128.0/(double)iwinmax) + 0.5;

4. jr3d3 = jr3d*(128.0/(double)iwinmax) + 0.5;
return;
I

del()

printf("\n\n Deleting files with reserved names.");

system("delete bnorm.img;*"); /* these names are reserved for facefinder */

system("delete orig.img;*");
return;

B-38

facerec(version)
int version;

char ch[2J,t2130],t31301,t4[30J ,t5130J;
mnt l,m,n,p,dx,dy;
if (nf != 0)(
cisO);
printf(" trying to recognize faces found...");
for (m=l; m~nf+l; m++) {
t2[01 = '\0'; 1* create file names for face # m ~
t4[01 = \;
strcat(t2, "bnorm. img; \0");
strcat(t4,"orig. img;\0");

4 t3[1 = m + '0';
t3111 =-\1
strcat(t2, t3);
strcat (t4, t3);
sx = 60;
sy = 30;
printf("\n %s"l,t2);
sclear(O, 1);
readim(sx,sy,200,200,t2,"nocomm"); 1* display bright-_norm face *

1 = sy;
vhile(brpixel(sx,l) !=0) 1++; /* get fx,fy values *

fy =1 - 1;
1=sx;

vhile(brpixel(l,sy) !=0) 1++;
fx = 1 -1;

dx = fx -sx;

dy = fy -sy;

cont enhance(m);
scale(m);
text(70,l0,0,l,0, t2);
gestalt(m); 1* gestalt values put in ilist[O] *
initializeo;
sclear(0, 1);
readim(200,sy,200,200,t4,"nocomm"); /* display original face *

text(200, 10,0,1,200, t4);
if (version == 1){
printf("\n Save in dbase? (Y/N) >)

scanf ("%s", ch);
if (ch[0l == 'y' 11 chIOJ == 'Y'){
printf("\n enter name of subject (up to 10 letters) \n>");
scanf("%s", t3);
p = 0; /* highest existing version # for this subject *

for (n=l; n<k+l; n++){
if (strcmp(ilistlnl.name,t3) ==0)

p = ilistlnJ.num;

k =k + 1;
S p = p +1;
-Silistlki.name[0j = \;
S. strcat(ilist[kJ .name, t3);

ilistlkl.num p;

B-39

-J, NPnP -. -w'I

ilistjkj-winlx = ilist[OJ.winlx;
ilistlkJ.winly = ilistIOI.vinly;
ilist~kJ.vin2x = ilist[O].win2x;
ilist~kJ.win2y = ilist[OJ.win2y;
ilist(kJ.win3x = ilistIOJ.win3x;
ilistlkl.win3y = ilistIOJ.win3y;
ilistlkl.win4x = ilistIOJ.win4x;
ilistlkl.win4y = ilist[OJ.win4y;
ilist[k].win5x = ilist[OJ.win5x;
ilist[kJ.win5y = ilist[Oj.win5y;
ilist[kj.win6x = ilistIOI.win6x;
ilist[k].win6y = ilistlOl.win6y;
t5[01 = \;
s trcat (t5, "If ace. dbase I\O")
strcat(t5,ilist[kJ .name);
strcat(t5,".img;\O");
saveim(200,sy,dx,dy,O,t5,"nocomm");
writefile('Iface.dbaselothers-dat;l",ilist,k);

else{
if (m < nf)

printf("\n Forget about rest of faces and return to main menu? (Y/N) >)
scanf("%s" ,ch);
if (ch[O] = , 11 ch[OJ = 'Y')

return;

recognize(O); /* pass in gestalt values of ilistIOl *
delete(t2);
delete(t4);
clsO);

else{
printf("\n face not found.");
prtc();

nf = sx =sy = 0;
fx = fy = 511;

return;

B-40

static int resultsl[257j15J;
static int listI10l]; /* list of id#s ordered by distances in list2 *
static double t[l0lJ,list2flOlJ; 1* total distances (ftr all windows) *
static double vil1l11171; /* vlidJ[wJ = distance from person #id to

unknown person for window #w (Russel, 1985:4-40a) *

recognize(num) /*from REMID.FR 06/03/86 by R. Russel *
int mum; /* the position in ilist(I of gestalt values to use. *

char t81301;
double gix,giy,gux,guy,sigix,sigiy,a,b,c,most;
mnt id,w,m,n,j,confid, test;
double p[1 = [10.0,1-0,1.5,2.0,3.0,1-5,1.0); 1* window performance factors

(update after training and testing with sufficient samples *
/* note: p[OJ is used for total of factors */

printf("\n\n\n Now trying to recognize subject in top half of screen.\n");
printf('\n Presently trained with %d subjects.",(i/4));

w = 1;
for (id=l; id<(i/4)+l; id++.')

m = id*4 - 3;
gix = ((double) (tlistl.winlx +tlist[m-slJ.winlx +tlistlm+2J.winlx

+ tlistjm-s3J.winlx))/4.0;
giy = ((double) (tlistil.winly + tlistlms.J.winly + tlistjm+21.winly

+ tlistlms.31.wnIriy))/4.0;
gux = (double) ilist[numJ.winlx;
guy = (double) ilistlnumJ.winly;
sigix = ((double) (abs(gix-tlistimJ.winlx)*abs(gix-tlistjmJ.winlx)+

abs(gix-t list lms 11. inlx)*abs(gix-t list Im-s.winlx)s
abs(gix-tlistim+s2].winlx)*abs(gix-tlistjms+2J.winlx)+

sigix = sqrt(sigix);
if (sigix < .5) sigix = .5;
sigiy =((double) (abs(giy-tlistimJ.winly)*abs(giy-tlistlmJ.winly)+

abs(giy-tlistjm+2J .winly)*abs(giy-tlistmslJ .winly)+

sigiy =sqrt(sigiy);

* if (sigiy < .5) sigiy = .5;
a = (gix-gux)*(gix-gux)/(4*sigix*sigix);
b = (giy-guy)*(giy.-guy)/(4*sigiy*sigiy);
c = a + b

v~idJ~wI exp(-1.0*c/l.4) *p1w];

p. B-41

w = 2;

for (id=l; id((i/4)+l; id++) I
gix = ((double) (tlist[mI.win2x + tlistlm+lJ.win2x + tlisttm+21.win2x

+ tlistjm+31.win2x))/4.0;
giy =((double) (tlistimJ.win2y + tlisttm+lJ.win2y + tlistlm+2].win2y

+ tlist[m+31.win2y))/4.0;
gux = (double) ilistjnumj.win2x;
guy =(double) ilistinumi-vin2y;
sigix =((double) (abs(gix-tlistfmi.win2x)*abs(gix.-tlistim).win2x)+

abs(gix-tlistlm+ll .win2x)*abs(gix-tlistim+l .win.2x)+
abs(gix-tlistlrn+21.win2x)*abs(gix-tlistlm+2J.win2x)+
abs(gix-tlistlm+3J .win2x)*abs(gix-tlistlrn+3] .win2x)))/4.0;

sigix =sqrt(sigix);

if (sigix < .5) sigix =-5
sigiy =((double) (abs(giy-tlistimj.win2y)*abs(giy-tlistjm].vin2y)+

abs(giy-tlistlm+lj .win2y)*abs(giy-tlistlm+lI .win2y)+
abs(giy-tlist[m+2J .win2y)*abs(giy-tlistlm+2J .wiri2y)+
abs(giy-tlistjm+3J .win2y)*abs(giy-tlistlm+3J .win2y)))/4.0;

sigiy =sqrt(sigiy);

if (sigiy < .5) sigiy =.5;
a = (gix-gux)*(gix-~gux)/(4*sigix*sigix);
b = (giy-guy)*(giy-~guy)/(4*sigiy*sigiy);
c = a + b;
v[idj lvi = exp(-1.O*c/1. 4) *p(wJ;

w =3;t
for (id=l; id<(i/4)+l; id++){

m = id*4 - 3;

gix =((double) (tlistl.win3x + tlistjm+1i.win3x + tlistim+21.win3x
+ tlistlm+31.win3x))/4.0;

giy = ((double) (tlistlml.win3y + tlistjm+1j.win3y + tlistlrn+21.win3y
+ tlistlm+31.win3y))/4.0;

gux =(double) ilistinumi.win3x;
guy = (double) ilistlnuml.win3y;
sigix = ((double) (abs(gix-tlist~mi.win3x)*abs(gix-tlist[mJ.win3x)+

abs(gix-tlistfm+lI .win3x)*abs(gix-tlist[m+11 .win3x)+
abs(gix-tlistim+2J .win3x)*abs(gix-~tlistlm+2J .win3x)+

sigix = sqrt(sigix);
if (sigix < .5) sigix = .5;
sigiy = ((double) (abs(giy-tlistlmj.win3y)*abs(giy-tlist~m].win3y)+

abs(giy-tlistim+lJ .win3y)*abs(giy-tlistlm+1i .win3y)+
abs(giy-tlistlm+2J.win3y)*abs(giy-tlistlm+2] .win3y)+
abs(giy-tlistim+31 .win3y)*abs(giy-tlistlm+3J .win3y)))/4.0;

sigiy = sqrt(sigiy);
if (sigiy < .5) sigiy = .5;
a =(gix-gux)*(gix-gux)/(4*sigix*sigix);

b =(giy-guy)*(giy-guy)/(4*sigiy*sigiy);

c =a + b

vjidl lvi exp(-1.O*c/l.4) * w]

B-42

w = 4;
for (id=1; id<(i/4)+1; id++)

m = id*4 - 3;
gix =((double) (tlistlml.win4x + tlistlm+lJ.win4x'+ tlisttm+2].win4x

+ tlistlm+3].win4x))/4.0;
giy =((double) (tlistl.win4y + tlistlm+lJ.win4y + tlistlm+2J.win4y

s + tlistim+31.win4y))/4.0;
gux =(double) ilistlnuml.win4x;
guy =(double) ilist~numi.win4y;
sigix = ((double) (abs(gix-tlistimJ.win4x)*abs(gix.-tlist[mj-win4x)+

abs(gix-tlist[m+lJ .win4x)*abs(gix-tlistlm+lJ .win4x)+
abs(gix-tlist~m+21 .win4x)*abs(gix-tlistlm+2J .win4x)+
abs(gix-tlistlm+31 .win4x)*abs(gix-tlist[m+3I .win4x)))/4.0;

sigix = sqrt(sigix);
if (sigix < .5) sigix = .5;
sigiy = ((double) (abs(giy-tlistim].win4y)*abs(giy-tlist~mJ-win4y)±

abs(giy-tlistlm+lj .win4y)*abs(giy-tlist~m+lJ .win4y)+
abs(giy-.tlistlm+2J .win4y)*abs(giy-tlist~m+2J .win4y)+
abs(giy-tlist~m+31.win4y)*abs(giy-tlistlm+31.win4y)))/4.0;

sigiy = sqrt(sigiy);
if (sigiy < .5) sigiy = .5;
a = (gix-gux)*(gix-gux)/(4*sigix*sigix);
b = (giy-guy)*(giy.-guy)/(4*sigiy*sigiy);
c = a + b;
vlid][vJ = exp(-l.O*c/l.4) *pjwJ;

w = 5;
for (id=l; id<(i/4)+l; id++)f

mn = id*4 - 3;
gix =((double) (tlistimJ.win5x + tlistlm+lI.win5x + tlistlm+21.win5x

+ tlisttin+3J.win5x))/4.0;
giy =((double) (tlisttml.vinsy + tlistfm+lj.win5y + tlistlm+2].win5y

+ tlist[m+3J.vin5y))/4.0;
gux =(double) ilist[numj.win5x;
guy = (double) ilistinumj.win5y;
sigix = ((double) (abs(gix-tlist[mJ.win5x)*abs(gix-.tlist~mJ.win5x)+

abs(gix-tlist[m+lJ .win5x)*abs(gix-tlist~m+lJ .win5x)+
abs(gix-tlist(m+2j .win5x)*abs(gix-tlistim+2J .win5x)+
abs(gix-tlistfm+31.win5x)*abs(gix-tlistfm+3j .win5x)))/4.0;

sigix = sqrt(sigix);
if (sigix < .5) sigix = .5;
sigiy =((double) (asgytitm~i~)asgytitm.i~)

abs(giy-tlistlm+lJ .win5y)*abs(giy-tlist[m+li .win5y)+
abs(giy-tlist[m+21 .win5y)*abs(giy-tlist~m+2I .win5y)+
abs(giy-tlist~m+3J .win5y)*abs(giy-tlistlm+3J .win5y)))/4.0;

sigiy =sqrt(sigiy);

if (sigiy < .5) sigiy = .5;
a = (gix-gux)*(gix-~gux)/(4*sigix*sigix);
b = (giy-guy)*(giy-guy)/(4*sigiy*sigiy);
c = a + b

vlidl[wI exp(-l.O*c/1.4) *pivi;

B-43

w = 6;
for (id=1; id<(i/4)+l; id++){

m = id*4 - 3;
gix =((double) (tlisttmJ.win6x + tlist[m+lJ.win6x + tlistim+2J.vin6x

+ tlistlm+3J.win6x))/4.0;
giy - ((double) (tlistl.win6y + tlist(m+lJ.win6y + tlist~m+2J-win6y

+ tlistlm±3J.win6y))/4.0;
gux = (double) ilistinumJ.win6x;
guy = (double) ilistinum].win6y;
sigix = ((double) (abs(gix-tlist~mJ.win6x)*abs(gix-tlist~mJ.win6x)+

abs(gix-tlistlm+lJ .win6x)*abs(gix-tlist~m+lJ .win6x)+
abs(gix-tlist[m+2J .vin6x)*abs(gix-tlistlm+2J .win6x)+
abs(gix-tlist[m+3J .win6x)*abs(gix-tlist~m+3J .win6x)))/4.0;

sigix = sqrt(sigix);
if (sigix < .5) sigix = .5;
sigiy = ((double) (abs(giy-tlist~mJ.win6y)*abs(giy-tlist~mJ.win6y)+

abs(giy-tlist Im+l J.win6y)*abs(giy-tlist Im+l J.win6y)+
abs(giy-.tlist~m+2J.vin6y)*abs(giy-tlist[m+2J .win6y)+
abs(giy-tlist[m+3] .win6y)*abs(giy-tlist~m+3J .win6y)))/4.0;

sigiy = sqrt(sigiy);
if (sigiy < .5) sigiy = .5;
a = (gix-gux)*(gix-gux)/(4*sigix*sigix);
b = (giy-guy)*(giy-guy)/(4*sigiy*sigiy);
c = a + b
v[id]IwJ = exp(-l.0*c/l.4) *p~wJ;

for (id=l; id<(i/4)+l; id++)(
tlidJ = 0.000000001;
for (w=l; w<7; w++)

tlid] += vlidI[wJ;

t[idJ = tlidl/p10J; /* max tlidl 1.0 when distance from id to unknown *
/* individual = 0.0 *

/* now have all distances ordered by id#, need to order id#s by distance *
for (m=l; m<101; m++)

listtml =0;

list2ImJ 0.000000001;

for (m=l; m<(i14)+l; m++)
most = 0.000000001;
for (j=l; j<(i/4)+1; j++)

if (t~jj > most)
* most = tiji;

n j;

I

listimi n; /* id # *
list2[mJ t~ni; /* distance *
t[nJ 0.000000001;

a B-44

% /* now have ordered list of candidates, need to display them *
St test = 0;

if (list2[l] > 0.001)
printf("\n\n Candidate Distance")-.

1* printf("I Confidence"); *

for (m=l; m<(i/4)+l; m++)
if (list2jmJ > 0.001)

* if (m == 1){
printf("\n 1st Choice:)

t8[01 = \,
strcat(t8, "Iface.dbaseJ\0"I);
strcat(t8, tlistjlisttlJ*4 - 3J .name);
strcat(t8, ".pic\0"');
readim(50, 286, 200, 200, t8, "nocomm")
text(50,266,0,l,200,tlist~listll*4 -31.name);

test =1

if (m == 2)
printf("\n 2nd Choice: I);
t8[0J = \;
st rcat (t8, " f ace. dbaseJ \0")
strcat(t8,tlistllistl2l*4 - 3J.name);
strcat(t8, ".pic\0");

% readim(200, 286, 200, 200, t8, "nocomm")
text(200,266,0,l,200, tlist(list[21*4 -3J .nane);
test = 2;

if (m == 3)
printf("\n 3rd Choice:)

St8[01 = \'
strcat(t8,"[face.dbaseJ\0");
strcat(t8,tlistllistl31*4 - 3J .name);
strcat(t8,".pic\0");
readim(350, 286 ,200, 200, t8, "nocomrm")
text(350,266,0,l,200, tlistllistt31*4 -3J.name);

test = 3;

if (m == 4) printf("\n Others:)
if (m > 4) printf("\n

1* confid =based on distance of this candidate and
distances to next candidates *

printf("%lls %f",tlist[list[mJ*4 -31.name,list2Iml);

-~1*printf(" %d",confid);*/

else m=200;

B-45

., . . . ' -

if (test == 0)

printf("\n\n Could not find any close enough candidates.");

printf("\n The computer has never seen this person before.");

if (test < 3 && test != 0) {
printf("\n\n Could not find any more close enough candidates so");
if (test == 1) printf("\n only displayed 1 picture.");
else printf("\n only displayed 2 pictures.");

prtco;
return;
I

/* End of program */

06

Em

.1

'- 3"

.' .. ,. .p- - ." . : :j -, ,-,- - ,- ,:-i ' i . :

ITEX-100 Subroutines used by FACE.C

ACLEAR RHLINE

BLUR RPIXEL

BRPIXEL RTSUBTRACT

BWPIXEL SAVEI?1

CAREA SCLEAR

CIRCLE SETCAMERA

FILL SETHDW

GRAB SETINMUX

HISTEQ SETLUT

INITIALIZE SETREG

4INITREGS SHARPEN

LINE SNAP

LINLUT STATIC LUTS

LOPASS STOPGRAB

MAPLUT SWAP6

MAREA TEXT

OPAREA WAITVB

READIM WHLINE

RECTANG TJE WPIXEL

REP ZOOM

B-47

Appendix c

Autonomous Face Recognition Machine

User's Manual

C-1

Table of contents

Page

Introduction........................C-3

I. Operation.......................C-4

Logging On and off................-4
Two Things You Should Not Do............C-
Image Acquisition.................C-4
Face Location C-5

Gestalt and Identification C-7
Care and Feeding of the Database..........C-7
Demonstration...................C-8

Identifying an Individual..........C-8
The Total System................C-9

Other Programs..................C-10

II. Technical Details..................C-lb

Where is Everything?'..............C-lb
Startup.....................C-lb
Protection...................C-12
modification...................C-12

C-2

V Introduction

The information presented in this manual is divided into

two parts: Chapter 1 gives enough information for a casual

user to operate the AFRM, and Chapter 2 gives information

needed to modify, initialize and re-host the AFRM.

User friendliness was a primary concern when writing the

code for the AFRM. The AFRM contains self-explanatory menu

options, it tells the user exactly what is required from

each keyboard (user) entry and it is fault tolerant. The

AFRM code has been commented on in detail and uses only

simple C programming techniques (no nonsense like pointers

to arrays of pointers). The goal was to write the code as

SQ efficiently as necessary, and then as readable as possible.

It is hoped that future modifications to the AFRM will

strive to maintain an easy user interface and minimum

additions to this manual.

4c-3

10
. *

• -.,. , , . . ,": ., .C-, 3

I. Operation

.-

Logging On and Off

The easiest way to get to know the AFRM is to sit down

and use it. It is located on the Micro-VAX II designated

SMV2A in the AFIT Signal Processing Lab. To run the AFRM,

log onto SMV2A using the username FACE, no password is

required. The AFRM will run automatically and will perform

several seconds of hardware and software initialization and

will then present the main menu. When you are done using the

AFRM, return to this menu and select the QUIT option. This

will get you out of the program and automatically logout.

Two Things You Should Not Do

4b 1. The AFRM needs to create temporary files now and then

as a normal part of its operation. It will delete these

files as soon as they are no longer needed. Since these

files are created and deleted without informing the user, the

user should avoid saving files with these temporary-file

names. Never save faces in files named:

BNORM.IMG
ORIG.IMG

At some un-announced point in time YOU WILL LOSE THEM.

2. The AFRM has been designed to be fault tolerant. You

*i can enter anything you want, at any prompt you want, and the

AFRM should handle it. The AFRM will inform you if your

input is invalid. The only entries not allowed are CTRL-C

C-4
_4

*' " ," " " "-"""" -""-:"" '-- .- -'-'. . ..- -.- "-. . .<".. . ..-' ..- . , ' - , , I

and CTRL-Y which terminate the program without going to the

iV main menu option QUIT. These are not allowed because the

AFRM will not be able to save updated database files and

because the user will be allowed into the FACE account where

he shouldn't be (the AFRM won't cause an automatic logout).

During normal AFRM operation this is not a concern for

the user because the CTRL-C and CTRL-Y entries are disabled

by a protection scheme described in Chapter 2. It is only

mentioned here to remind Special Users (those who modify,

install or initialize the system) to re-install the

protection scheme when they are done and to make them aware

of the consequences of CTRL keys when protection is not in

place.

Ob Image Acquisition

There are several ways to input images into the AFRM and

there is a sub-menu for all the options. This sub-menu is

obtained by selecting main menu option #1. Most of the menu

options are self-explainatory and so minimum detail is given

here.

0: Return to Main Menu

1: Stationary Target - Allows acquisition of a
512 x 480 image from the camera.

C-5

5-

.5

2: Moving Target - Acquires a background scene
from the camera (nobody in it), then
acquires a second scene (with subject).
The AFRM will provide the rectangular
area that is different in the two
scenes. This target area is all that
is processed by the face locator (if
locator is selected) and so the face
locator will be faster than it would
be for a full size scene.

3: Load From Memory - Allows user to load a

an image stored in the user's personal
account on SMV2A).

4: Save in (FACE] - You can save images in this
account if desired but please reserve
the space in this account for images that
are useful to everybody. If you only
want the image for yourself then login
to your account and save the image using
TEST100.

V 5: Set Camera Port - The default port is (0) and
this allows use of the Dage camera. The
two General Electric cameras are connected
to ports (1) and (2).

6: Camera Check - Allows continuous acquisition
of images so you can position and focus
the camera.

7: Re-initialize Hardware - Go back to default
camera port, clear the screen, etc.

-r Face Location

Main menu option #2 runs the face location algorithm.

This algorithm will look for faces in the image on the screen

and save all it finds to temporary files. There is an option

to sharpen the scene that is normally not needed but some-

-. times helps the face finding process. This sharpening option

may be removed in the future.

C-6

Gestalt and Identification

Main menu option #3 only works after a face(s) was found

by option #2. If no face(s) was found then this option will

return to the main menu. This option runs the gestalt

algorithm on the first face found by option #2. Then it runs

the recognition algorithm on that face. During recognition

the user is allowed to save the face and its gestalt data in

the database. There is no other time when a new face and its

gestalt data are available for saving in the database so save

it NOW if you want it, otherwise you will have to Gestalt it

again later (faces are easily deleted from the database if

you change your mind later). If more than one face was found

in option #2 than all faces will be gestalted and identified

in the order found.

Care and Feeding of the Database

Several main menu options are discussed in this section

because they all have something to do with using and changing

*- the database.

4: Display Contents of Database

5: Delete a Subject - To "delete a subject",
means to delete the training file for
this subject. The actual images and
gestalt values can still be saved in
the .IMG section (files it is not
trained on) and the AFRM can be re-
trained with this subject later. You
may also delete this subject from the
database altogether if desired.

c-7

6: Delete an Image - This option allows the
deletion of single images (files that
the AFRM is not trained on) from the
database.

7: Train - This allows the user to train the
database with 4 files from the .IMG
section of the database. The files
must all have the same name and must
have different version numbers. To
exit this option at any time, enter
a negative version number.

Fault tolerance is really evident in this section of the

AFRM because it is so important to maintain a correct data-

base. The AFRM constantly checks user inputs for validity

and gives out pertinent information when it finds a mistake.

For example, suppose it is decided to train the AFRM with

the name Smith, version numbers 1, 2, 3, and 4. The AFRM

will verify that the name you enter exists in the I1MG sec-

tion and that it does not exist in the trained section. it

will verify that files exist for all the versions you type

in and that you have not typed the same version number more

than once. If you make a mistake and wish to exit to the

main menu, you are allowed to do so at any time.

Demonstration

This section is for users who are already familiar with

the operation of the other main menu items. The demonstra-

tion option (#8) provides a menu with the following options:

Identifying an Individual

This option allows the user to demonstrate the recogni-

C-8

tion capabilities of the AFRM by selecting an un-trained

image from the database and asking the AFRM who it is. This

option is also used to obtain recognition scores so that the

AFRM can be evaluated.

The Total System

This option allows the user to run all AFRM algorithms

together starting at image acquisition and ending with

recognition. This option is run as follows:

*- 1. Run the "Camera Ckeck" option and set the camera
up to take a full body picture of a standing
person. Then ensure nobody is standing in the
field of view of the camera.

2. Select the total system option.

3. Select the camera port desired. After a couple
seconds, the screen will go black as the camera
continually acquires images and the itex board

* applies real-time subtraction.

4. When the screen is black, have a subject walk
*, into the field of view of the camera, turn and

stare at the camera, and stand still for a few
seconds. As soon as the AFRM "sees" the subject
it will snap a picture and begin to look for a
face. (There is no sharpening option to worry
about here.) If a face is found, then the AFRM
will gestalt it and try to recognize the
individual. (There is no save option here.)

5. After recognition, the user will be asked if
the whole process should repeat.

C-9

,I

Other Programs

There are other programs associated with the development

of the AFRM that may be useful to some users. These programs

are found in the following directory:

dua2:[llambert.cdir]

The programs can be run by typing the following:

run [llambert.cdirlprogramname

If you don't have an account on SMV2A where you can login and

run these programs, then login as USER, no password required.

-' The following programs are available and are described in

Lambert's 1987 masters thesis, "Evaluation and Enhancement of

the AFIT Autonomous Face Recognition Machine"

S- Sub Demo.exe
MTI.exe
Bright.exe
Graph.exe
Face Sig.exe

-4

C-10

II. Technical Details

Where is Everything?

The executable AFRM program is located in the directory

dua2:[face] and is called FACE.EXE. The database files are

located in a sub-directory called dua2:[face.dbase]. There

are two database files, called TRAIN.DAT;l (for the trained

gestalt files), and OTHERS.DAT;l (for the un-trained files).

The actual images of people stored in the database are also

located in this sub-directory.

The source code for the AFRM, called FACE.C, is located

in dua2:[llambert.cdir]. A good example of code for running

itex routines is TESTI00.C, located in duaO:[itilOO.itex].

Startup

If the AFRM is not running properly, has been changed, is

being hosted on another computer or for some other reason

needs to be started up from scratch, the following steps must

be done:

1. Ensure that FACE.EXE is located in a directory called

[FACE] and that the database files are put in [FACE.DBASE].

If you use any other directory names, then modify the source

code that specifically calls out these names and re-compile.

2. Ensure that the database files TRAIN.DAT;l and

OTHERS.DAT;l exist. They can be created by putting an

asterisk (*) into each file. The asterisk is the EOF indi-

cator looked for by the AFRM when it reads these files.

C-li

• .-. ----

There does not have to be any gestalt data in the files to

-- ' start with.

3. Ensure that the protection scheme described in the

next section is in place.

Protection

In order to protect the AFRM and its database from

accidental changes/erasures, a login command file has been

setup that automatically runs the AFRM upon login and auto-

matically logs out when the AFRM stops. It also protects the

database files by turning off the CTRL-Y and CTRL-C functions

before running the AFRM.

"- In order to get around the protection, login to SMV2A as

FACE and immediately start hitting CTRL-C. This will

to terminate the LOGIN.COM file as soon as it begins. Now you

will be logged on and can do anything you want to the [FACE]

and [FACE.DBASE] directory contents.

LOGIN.COM contains the following commands:

a $show quota

$set nocontrol-y
$define/user mode sys$input sys$command:

. $run face
$lo*gout :-- logout/full
$1o

a" Modification

If a change is needed in the AFRM then the C source code

(FACE.C) has to be edited, re-compiled and linked to the

appropriate libraries. The following commands are needed to

accomplish this:

C-12

....................................... *-..

- K

1. EDIT FACE.C

2. CC FACE.C
A' 3. @L FACE

The third command runs a command file called L.COM which

identifies all the appropriate libraries for you (so you

don't have to do all that typing). L.COM and an associated

file called OPTIONSFILE.OPT are located in:

dua2:[llambert.cdir]

and should be copied into your own directory for use. The

contents of these files are as follows:

L.COM

link 'Pl',duaO:(itilOO.itexlitexlOO/library,
dua0:[itilOO.toolbox]toolbox/library,

dua0:[itilOO.vms]vmslOO/library,

dua2:[llambert.cdir]options file.opt

OPTIONS FILE.OPT

SYS$SHARE:VAXCRTL.EXE/SHARE

A modification that may be necessary in the future is a

change to the declared size of the arrays in the AFRM. The

AFRM is presently set to handle up to 100 subjects in the

training file (400 gestalt sets, tlist[400]) and 100 images

in the non-trained file (100 gestalt sets, ilist[100]).

C-13

NI

Appendix D

Gestalt Files

Page

D-2 TRAIN.DAT;l The training file.

D-4 OTHERS.DAT;l The test file.

The top line shown in these files (heading)

is not present in the actual AFRM files.

The asterisk (*) at the bottom is the EOF

looked for by the AFRM.

D-1

.!

4p 4 ,4 -4-4 -4 -4

X oS ok q n% 4"r Dmr qc c ,c c Tr oc imo i rr w

%0 enML7M n(A nme ' T" R0'TMmM n.Dm-T- Vmqv-

>4 - -4 %o co oo cJo o D 4 N j 4r)o om-)w- 4 -% oc Na qc
Ln i L L u)Ln n n L %ooLn) % % Ln o n n L %. r r-co - n L LnLn L A'0,%o %

X 4e 4- N r - -c 7 t nL)L oL D -rL)mr -r -r
Ln C4C4C qC 4C1 -f 4r4r- q""t Q"r ~ c 4ciC4(4r

>4 NC DC O %CT N 4C r3C C1MCo 4 0% aO)C)C N l".
Rr% DL L o% Ln DLALr L A Dk ok DD% or -r -L A DLA D%

X 4"m n- ,4"- q m m r oa)r v qo i o% - n-4 m Nm nc vw-

'g "M M M M mI T- nM M" VI c T- C R q

>4- nq r 4 O or-- 4c n-mmc C)c n -4 o\ o 4r m 0 q R

-c w rrrL -r-r wono o n r n oLnL L io o- L n nrne T n 'n r -)L

X 4" n-7 r 4-r 4Anr o -4-T L A) ococ A nL Nm -L A vqTK

M4 fn~ rnc rn M' m' LA cn fn m M 0. M A q0 '0 MJ AJ LA fn 0 W~ en.0 M fn IV -W- V

r-r4o -)% Dmr -m- o omr Dmmc D% or o- .

r4% D% rm% 0k D D% 0% r -r o %0 D %DD D r-%0 L AL r-Nr97 0 $0D

xz, vL nm(Nmr nc >c TL n oc o n-)a 0c omO Nr

(z

4~> >4 JJ4JjJ

0000 4-) 4J 4.) 4.) W0 La Li 4- -4 3: Li 3t Li .00.0.00 0 0 0--4 44-4

Z 4> > 1 0f4> > i4- 4-

d D- 2

%1

.2b 2

-4

r-(Co- o-L f D 40 -r-4M-:rNODC4M
I LIm MMM -: mI - - m n VM -

c Ocor - C - D - o - 4m U WNcoN
m m mmL o oLnL % o Dok % f '% % e oLnk

-4Im o o)U l D% o or DO D% koLI -%

r- -4 r- 19 ONC 4- 414r o M -4 -N m-4

m m m r - v - Ln- rry)LA L LA Ln urLu- Lr LA L

k4e M v M %D .. 4 N~ -4 197 M~r N -4~~ N --

01W 0% 0 00 0n LnL nL n nc Li Li g Ln n n-

-N -4" m Iz 4 q

V r V r m M. .0 .0 (n in in U) V0 V VV

D- 3

- %'' % ~

>4 ko(4% c A o oDC L .OD%

-4

o -w mn aN r4 ko -4 " r coc n-

>4 0%o)r-)%o- or- moN
LA nLn% L %o Lnr- L LA Ln %o LA.%o

> -4 o - "c)-vLn r- rnoN tz

X - r u mo-i4 -4tr- (Dcom -4

>4 -L 4 to-v o" 4 Ln
n v v- LA LA -K -T LA m -w LA LA LA

X er4 c~j LA m' ci 0 LA -o LA 00 e m -i

>r-co -m m D c- %ok -)4

** % LALo AL -%Dr-% L r - %D,o

Xm m r- oN LA v rj a .a-4 c0 m r

>40DLr- L o)r-"Lf) cor- r4

z
0 .-4 -4 .-4 ~4 A 4 - 4 ~-4 4 -4 .-4 -4 .-4

41 b. 3t -4 0 .0 -4.0 tn w)b

r44I Ad U 10 i -4 tn -4 V t7 L
l Mf a. iti f -~~0 n'

D- 4

Fv , K v M v Jr .U3 W ~ PLP~ vP .Al.P W-1w wjW J F WY U -

Appendix E

Description of Brightness Normalization

E- 1

The brightness normalization algorithm, shown on page E-4

' is used to preprocess images fed to the AFRM. This appendix

describes how the code implements the equation descri in

Chapter 3, and shows the effects that the algorithm has on

various scenes.

The algorithm reads the original image into the array

"PIC" and puts the normalized image into the array "NORM".

The sum of all pixels in a given neighborhood is called

"NEIGH" and the average, "AVG" is this sum divided by the

number of pixels in the neighborhood; in this case 81 (9X9).

In order to speed up the program, it is noted that adjacent

neighborhoods have common pixels. Each new neighborhood uses

72 of the previous neighborhood's pixels and 9 new pixels in

its sum (NEIGH) so instead of adding up 81 pixels for each

NEIGH value, 9 pixel values are subtracted from the previous

sum and 9 pixel values are added to the previous sum. This

reduces the total number of computations needed to perform

the algorithm. Recognizing that each new set of 9 pixel

values is a column of pixels, the computations can be further

reduced by calculating the sums for all the columns first.

In this way a new NEIGH value is the old value plus one

column value minus another column value. This alone does not

speed up the algorithm though because the column values still

have to be computed. The speed up comes when the column

computation is sped up. (just as we went horizontally across

the screen adding 1 col and subtracting I col, we will update

columns in the vertical direction by adding 1 pixel and sub-

E-2

..

tracting 1 pixel). The total number of computations has now

been reduced from 512X512X81 (21 million per image) addition

operations to approximately 512X512X4 (1 million) additions,

allowing the algorithm to process an image in 8 seconds. The

lines that perform the "speed processing" are lines 27 to 39

in the code.

The pixel that gets modified in each neighborhood is the

center pixel for that neighborhood, as shown by lines 42 and

48 of the code. ([x,y] is the corner of a neighborhood so

[x+4,y+4] is the center). This pixel is called "PIX". The

equation discussed in Chapter 3 is implemented in the four

lines numbered 41 through 44. Reading the image into PIC and

writing NORM out to the screen (lines 23-25 and 50-52) adds

about 6 seconds to the total process.

Figures E-1 through E-7 show the type of processing that

can be accomplished by this alogirthm with various modifica-

tions to the equation in line 44. In all cases, the top half

of thp figure is a graph of the brightness variations along

the black line indicated in the bottom half of the figure.

Some figures show two images side by side. In these figures,

the left half of the figure shows the original image and the

right half shows the processed image.

.

E-3

.r. _%0 A P-

PrWV'W7 1 ************-**** wu********* w-*************** w* W. T; W-*4

2 BRIGHT.C : Brightness normalization algorithm *
3 will process whatever is on monitor. *
4 Author : Laurence C. Lambert - 1987 *
5 **
6 #include "sysSlibrary:stdio.h"
7 #include "duaO:[itilOO.itexjstdtyp.h"
8 #include "duaO:[itilOO.itexlitexlO0.h"
9 struct array(
10 int data[512];
11);

12 static struct array pic[5121,norm[512I;
13 static int coi[5121;
14 **
15 main()
16 [
17 unsigned base = Ox1600;
18 long mem = Ox2OOOOOL;
19 int flag = l,block = 8;
20 int pix,avg,diff,neigh,x,y,i,j;
21 sethdv(base,mem,flag,block);
22 printf(" takes about 15 seconds to process. please wait...");
23 for (y=O; y<480; y++) { /* read from video memory */
24 rhline(O,y,512,picjyJ.data);
25 j
26 y = 0;
27 for (i=O; i<512; i++) [
28 collil = 0; /* setup all columns for first y value *1
29 for (j=y; j<y+9; j++) col[i] += pic[jl.data[i];

-" .e30)

31 for (y=l; y<471; y++) {
32 for (i=0; i<512; i++) { /* now all columns calculated faster */
33 colliJ += (picfy+8J.data[i] - picly-1J.datalii);
34 }
35 x = 0;
36 neigh = 0; /* setup first neighborhood */
37 for (i=x; i<x+9; i++) neigh += col[i];
38 for (x=l; x<503; x++) (/* now all other neigh are calc faster */
39 neigh += (collx+8J - col[x-1]);
40
41 avg = neigh/81; /* these four lines are the heart of it all */
42 pix = picfy+41.data[x+41; /* neighborhood size = 9x9 */
43 diff = pix - avg; /* center size = 1 */
44 pix = 128 + diff;
45 /* for awesome effects try: */
46 if (pix < 0) pix = 0; /* other sizes, */
47 if (pix > 255) pix = 255; /* pix=128+multiplier*diff,*/
48 normly+4].data[x+41 = pix /* thresholding result, */
49 }} /* etc... */
50 for (y=0; y<480; y++)
51 whline(O,y,512,normlyj.data);
52 1

-53

E-4

A - - . - - . - . ..- - . .

4'..
*

*W~

U-'

fq

R

*,

4%

.1k,

".4 ___- I

"V

.4"..

~44.4.
4..

.4'.-

C
"V.-

0.3
U

-,
'U
C
-4

-4

0

-.4,
-4

.4
w

.4

- -
0)

-.4

"p

.~

.4-

".4

'%sJ.

V.4''.4~ .. * .4 . - -
- - .4 4.4..4.4..4...

.4. - V*4*.*.4'**~.4.4 .-.. ,.4'"..4..4.'.....4"..,...4 .4. . .4 .4 .4 .4 .4 .4 .4

p..

I.

p..-

'.6-p
.6~~ '.6-J

+

x
V -

-4

Ii

44..

44%*

'44

0)
. -4

1~ -~6

**0
0

0,
C
a.
U
U)

I:)

0)
.1 1..

.4.

C&.

4'..

E- 6
-4.

-.4.

.4.

V.

-........... . . p . .

S

U.

II

."..

, - - .-°

S!--v

£--7

.. . , - . .- .-- .- - - . . -- - ." ,_ . -" .- / - .. ;I

J.

I.

I .- xi>
V

- +

-I

I,

- x
-4

>1

- V
a)
-9

*0~' 4-.

V

C)

a)
U

w
a)
I.j

-- 4

La..

E-8

p.

p

~

4-I

* ~I-J

V

+

x
-- 4

II

x

>9

4-'

-'-4

V
0

a'

-~ 0)
C
0)
U

U,

LA

-

a,

-p
E- 9

-p

. * - - * a - ~%* CC-. ~ *. * * *
.--. **-~* jJ

a- - a- - .

I
*1~

tJ~

'-4

+

'--4

'I

0~

0)

I.

a

0)

0)
U
U2

w
'F. 0)

E-1O

a.

.. .- .*

.4;

I

4.'

• pr

I

,

.%

4.-

.4°

4'" -i.

Appendix F

Scenes Used to Test Face Location

The scene numbers shown below correspond to the numbers

in Table 5-2. If a false alarm was found in a scene, the

false alarm is shown on the page following that scene. The

top of the false alarm scene shows the location of the facial

signature found, and the bottom of the scene shows the false

face isolated by an ellipse.

Page Scene # Page Scene #
F-2 1 F-15 ii

, F-4 2 F-16 12
F-7 3 F-17 13
F-8 4 F-19 14
F-9 5 F-20 15
F-10 6 F-21 16
F-i 7 F-22 17
F-12 8 F-25 18
F-13 9 F-27 19
F-14 10 F-28 20

F-i

4' %.. -" .. " .-- , " .

-F-

0,.%
jIj P eF

mi

14
•

4 ol N
I

4

F-3

I hk

-F-

VWWWTW~WW 77'-R Ar N.I
yWVT

wVTVW1T~"

Id

. Nw ol

p'sm

F-

VI

F-6

F-7

~NVVXN1 'MXS Ni 'Vi V1 "fl Ni Ni wXfl~ PC'. 'V\ rg~ nJi ~' "wi Vi rr '~ Vh ~-w w irs irs in .-w irs icy UW~ US irs xru irs r. .rW ~fl a - irs ~-i.-'-u--u...

.4- ft.

"-i.-',

4-

.4

I..

ii

SW

S.

S.
S.

'ft

I

p

r

S

'ii

'ft

*5d~~~.
ft.",

I- F-S

_________ I
VV%'%&*~ftw' s/-; ~ft

& - - . - - 4 a a 4

I

a,

I,.

S. *

4. ,,~

.4.
a.

4..

d

tee
- a

I

a. I.

a- .

U
.4.

.4.

.4.

4.

a.

a.
a.

.5.

5. 5.
a..

F-9
'a.'

S
4.
a.

~ -~I ...w ~ ~a -. a-~ -- a- -a - a -.

rA

*: (2~/.
4-

J
J

N

A'..

.1
I
I

* . . F-1O

U

'N *~ *N * *~C ' * - ~ ~ ~ -. - - a

I

.... ...
MEO

F-li

- v~9r~

N.

N.

.1
.1

4..,

N.
.4.

4...

-4.

-4

.4

.4

0.?
.4.

.4-

4.4

-4

.4..

.4.4

4, .x** F-12
4,

.1
.4

44* ~ .4. .4 * * . 4 4-. . 4 .. *4*$.4 .4~ 4.- - - * 4

p. - - . . S

4

-p.

4'

* ..

4'. ~*4*
4' 44.*

*4~~

.4,
SI

-S.d
.4

-S.
S...

4-

5~

5454

'S

$5

4.-

q4

~45

7
4. -~

'S

/

45

F-13

p.44~
iS.

-v
4-,

*54445 ~ 4~-. S
% -' ~. ~*5 5 5 * 2- .4- 2- 2- 2- ..- .4- ~

* -8199 619 EVALUATION RMD ENHANCEMENT OF THE AFIT AUTONONOUS FACE Zfa
I RECOGNITION IHNE(U) AIR FORM I16T OF TECH
I IEIOHT-PRTTERSON AF9 ON SCHOOL OF ENGINEERING

UNCL.ASSIFIED L C LNGERT DEC 67 AFITIMUEMJIB'SD-25 F/I 12/9 ML

1.8.

-wi

I%

L 2.0_

'I'll

IIl!2l m ii J"--..J,.

MICROCOPY RiSO LIO(N If S! Ch?,t,

-

,%:

-:,

V .. . " " . ,V , 'V-, * ,W . ". V. .V -V .V.

* *~% - P . S . . - . -S -S - .

a'r

* F-14

F-15

KM Mr' .nr.1 rrWrrr MW

lp

F-16

F-i17

.. As

.4.

r, A.

'a *~*.F-18

'a.

'aI

C,

<(a

'S.

'a.

4.-

.1**

4.-

'a.
a'.

S.

'a
'a

a-.,

a',

~

~ '4'
"a F- 19
a-

--Sa,

"'4

- -. * *~ .- :.*~ *.~...J:..a.a..a.a

a -

a.

U

*1

d

.1

* V-.
* 'p -.

F-20

"I P%4~ '.;-a:-' ~ ~/ ~ ~ S.~S
5

.Sa~%t,~.\

FF-21

~pwr~v '-y'v ir~ g~

N

~

i .~

Mm

-a
a.

'a.'
'a,

m.d

0k

ala'

'N

J.

J..

'a

a..'

* 'a* - -a
a."-N

a,
a.

S.. -. -. a.-...

a,.....

% 'a%'a %

. !

! -

9.... :::
• ,4 -;

NW

4..

-.~. '.~..

*b.

S.,
4.,

4,.'

0

£

I

I
a

I a
J.

4,

4-

.1*

F- 24

... A.4M~Ai ~ - -

,- -i t '

ai i "

F-25

-:-.,

w w

.'_..,'''. -. " .- ..-., - , , -. - ...- ..- -.--- - . -' .'. ,-',','. . .-,..- --. , .., %-

w4

* ~ .,*-S.F- 26

% % W--A2.4A .~

K--7M I - V. --% -V ' -I-

II

.P "-PF- 27

.~. ..-

9
9
9
4

9

S a -~ - 1~ -~

I

~
b

'I *1
.1 ---

-. - - ~ ~ ~ -

9.

a

F- 28

4

U,,.: ~

'S.

-'U'-,

Nb..

S I
S

&

-. wwm

'U-
Up.. I j _

.a. - .1.1 -
Up

'U

'U
Nb.

Up

'U

N'

a
'N

'U

N;?

-U

Up'

'U

* F- 29
'S

A~A\~ .J .A~ " U- ~ 'U * 'N *,- ~ ". -. N-~ ~.- 'J~-~

.1

a"
~. ~a

Appendix G

Fast Gestalt Calculation

-S

S~S

to
.1*

5-

C,

7

-S

-C.

a

'a

.5 V
.5,. -~

~
G- 1

8

.1

~..

One of the recommendations for further research with the

AFRM is to make it process multiple pictures of a subject's

face. In order to do this, the AFRM has to be made as fast

as possible. Figure 4-2 shows that the longest time spent

in the processing loop is 3 minutes for gestalting the face.

If this time can be reduced significantly, then a real-time

processing of faces will be possible.

Recognizing that the gestalt calculation is basically a

center-of-mass calculation, a much simpler and faster algo-

rithm can be performed. This calculation is shown in the

code on page G-4. The new calculation was tested and was

found to give nearly the same results in only 5 seconds. The

difference in results is due to the fact that the calculation

treats all points as constant mass, but some points may have

different values (the contrast enhancement doesn't produce a

purely binary scene).

Gestalt values for a face were obtained using both cal-

culations and are shown below.

old 3 minute Gestalt New 5 second Gestalt
1 27,55 27,55
2 48,59 46,59
3 38,40 38,38
4 38,61 38,61
5 27,59 27,59
6 40,99 40,99

The two sets of gestalt data yeilded slightly different

distances in recognition, but these differences did not alter

the recognition results (ordering of candidates). Still, it

would be wise to maintain a database where all gestalt values

are obtained from the same source.

G-2

5Z

The new gestalt calculation is implemented as follows:

1. A copy of FACE.C was made and called NEWFACE.C.

2. CORTRAN16 is replaced by the subroutine on page G-4.

3. RTRANSA and RTRANSB are deleted.

4. The source code is compiled and linked in accordance with

the User's Manual.

5. The executable program, NEWFACE.EXE, is placed in the

directory [FACE].

6. The LOGIN.COM file for account "FACE" is modified,

changing the line "run face" to "run newface".

To go back to the original version, simply delete the program

NEWFACE.EXE and reverse the change made in step 6 above.

-Gt.4.,

.- $

ft " . -,','.. .~ ' '.o,.' .'.. ' .. .- .. - . ,..-. . , ,., . . , , .. " , -

'ft % ' . . - . . . - . . ; . ; . - . - % % ' % " - . ' . . ' % ' J . ' ' .

cortranl6()

int j,i,iwinmax,xtot,ytot,num;
double c,bmax,ir3d,jr3d;

xtot = ytot -num = 0;
.4 for (1=1; i<iy+2; i++)

for (j=1; j<1xt2; j++){
if (cray[jJ[ij > 100){
xtot += j

.4ytot += i

num++;

ir.d = dul)(yo/u)
ir3d = (double) (ytot/num);;

iwinmax = iy; /* scale *
if (ix > iwinmax) iwinmax = Ix;
ir3d3 = ir3d*(128.0/(doubleyiwinmax) + 0.5;

.4. jr3d3 = jr3d*(128.0/(doubleyiwinmax) + 0.5;
return;

"4-

Bibliography

Bromley, L. K. Computer-Aided Processing Techniques For
Useage in Real-Time Image Evaluation. .asters Thesis,
University of Houston, May 1977.

Edwards, Betty, Drawing on the Right Side of the Brain.
L.A. California: J.P. Turcher Publishing, 1979.

Goldstein, Alvin G.; Mackenberg, Edmund J. "Recognition
of Human Faces from Isolated Facial Features: A
Developmental Study", Psychonomic Science, Vol 6,
No 4, 1966.

Haith, Marshall M.; Bergman, Terry and Moore, Michael J.
"Eye Contact and Face Scanning in Early Infancy",
Science, Vol 198, 25 Nov 1977.

ITEX-100 Programmer's Manual. Part # 47-Si0008-02.
Imaging Technology Inc. Woburn MA, 1986.

Kabrisky, Matthew, Director Signal Processing Laboratory.
Personal Interview. Air Force Institute of Technology
Wright-Patterson AFB OH. May 1987.

Kernighan, Brian W.; Ritchie, Dennis M. The C Programming
Language. Bell Laboratories. Prentice Hall, 1978.

Luria, A. L. Human Brain and Psychological Processes.
New York N.Y. Harper & Row Publishers, 1966.

Routh, Richard L. Cortical Thought Theory: A Working Model
of the Human Gestalt Mechanism. PhD Dissertation,
AFIT/DS/EE/85-1, Air Force Institute of Technology, DTIC
Document, July 1985.

Russel, Robert 1. Personal Interviews. Air Force Institute
of Technology, August and November 1987.

Performance of a Face Recognition Machine
Using Cortical Thought Theory. Masters Thesis,
AFIT/GE/ENG/85D, Air Force Institute of Technology, DTIC
Document, December 1985.

Smith, Edward J. Development of an Autonomous Face
Recognition Machine. Masters Thesis, AFIT/GE/ENG/86D-36,
Air Force Institute of Technology, DTIC Document,
December 1986.

Werblin, Frank S. "The Study of Sensitivity in the Retina",
Scientific American, Jan 1973.

BI-1

VI TA

Captain Laurence C. Lambert was born on 29 October 1960

in Pittsfield, Massachussettes. He attended the University

of Lowell, Lowell Massachussettes, and received the degree

of Bachelor of Science in Electrical Engineering in May 1982.

After working for a year at the University of Lowell Research

Foundation, he entered the USAF Officer Training School and

was commissioned in June 1983. He then served as a Systems

Integration Engineer for the Life Support Systems Programming

Office, Aeronautical Systems Division at Wright-Patterson AFB

until entering the School of Engineering, Air Force Institute

of Technology, in June 1986.

Permanent address: 44 Lexington Ave #4

Magnolia, Mass 01924

V-
V-

UN~CLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMB No 0704-0188

I a REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

-~UNCLASSIFIED

sSECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION J AVAILABILITY OF REPORT

2b DCLASIFIATIO)DONGRAINGSCHEULEAPPROVED FOR PUBLIC RELEASE:
2b DCLASIFCATONIOWNG~ciNG CHEULEDISTRIBUTION UNLIMITED

* 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

* AFIT/GE/ENG/87D-35

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATIONj (if applicable)

School of Engineering AFIT/ENG
6c. ADDRESS (City, State, and ZIP Cocie) 7b ADDRESS (City, State. and ZIP Code)

* Air Force Institute of Technology
Wright-Patterson AFB, 0O- 45433

8a NAME OF FUNDING SPONSORING 8b OFFICE SYMBOL 9 DROCLREMENT INSTRUMENT IDENTIFICATION NUMBER
* ORGANIZATION j(if applicable)

8c ADDRESS (City, State, and ZIP Code) 1Q SOURCE OF FUNDING NUMBERS

PROGRAM PROjECT ITASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

I I TITLE (include Securitq Classification)

F valuatio'i and Enhancement of the Al-T Autonomous Face Recognition Machine

12 PERSONA. ALTH.OR S;

TYPE. OF rec C.O, C VEEn 1S 4 ATE OF REPORT (Year, Month, Day) 5PG ON1' _ToD 5 PAG DAUNT
4S Thesis F ROV ___ TO ___ I 1987 December I 215

16 SIUPPLEMEN-ARv NO'A'ON

17 COSA' CODES 18 SuBjECT TERMS (Continue on reverse if necessary and identify by block number)
*FIELD GROUP SU13 GROj 0 Computers Artificial Intelligence

* Q02 Image Processing Image Segmentation

* 19 ABSTRACT (Continue on reverse if necessary and identify by blck number)

Thesis Chairman: Mtatthew Kabrisky, PhD '

Professor of Electrical Engineering

70 DISTRIBUTION AVAILABiLITY' OF ABSRACT 121 ABSTRACT SECuRITY CLASSIFICATION
9jUCASS'FIED IJ'NLI -ED CE] SAME AS RPT D TIC UJSERS I UNCLASSI FIED

22 a NAME OF RESPONSIBLE INDIVIDuAL 22b TF.FPH-ONE (include Area Cd)2cOFFICE SYMBOL
f Dr. Matthew Kabrisky Professor. CS-15 I (513 2 55-5276 AFTT(NC

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PACE

UNCLASSI FIED

Continued from block 19: Abstract~ Ths thsisevaluates and improves the Autonomous Face ..Recognition Machine (AFRM) created in 1985 ,.AFIT. This
N effort involved re-writing the AFRM code in the C programming

language and hosting it on a Micro-VAX II. In addition,
several new algorithms were added to the AFRM including:
brightness normalization of input images, moving targetdetection, and a new face location algorithm. The results
of this effort include: improved face location, higherrecognition accuracy, and near real-time processing.

This thesis includes a complete description of the AFRM

Lpp

ontsdedlomen blo is9tobract.

w .uh

Reconiton achie (FRM cretedin 985 t AIT.Thi

effot inolve rewritng te ARM cde i th C pogramin

/AL MD

.Vf0to1

-

